Serre-type conjectures and mod p Langlands correspondences

Serre 型猜想和 mod p Langlands 对应

基本信息

  • 批准号:
    402885-2012
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2013
  • 资助国家:
    加拿大
  • 起止时间:
    2013-01-01 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

Number theory is the study of whole numbers and the solvability of equations in whole numbers. It is one of the oldest branches of mathematics. One particularly famous problem is Fermat's Last Theorem, which concerns the insolvability in the integers of certain simple equations. It was only solved some 15 years ago, by establishing a deep connection between elliptic curves (objects of geometry) and modular forms (objects of analysis and the theory of symmetries). This deep connection is a special instance of the Langlands Program, which consists of a number of very general and interlinked conjectures that, in particular, help to explain many phenomena in number theory.
数论是研究整数和整数方程的可解性的学科。它是数学最古老的分支之一。一个特别著名的问题是费马大定理,它涉及某些简单方程的整数不可解性。直到15年前,通过在椭圆曲线(几何对象)和模形式(分析对象和对称性理论)之间建立深刻的联系,这个问题才得到解决。这种深层联系是朗兰兹纲领的一个特殊例子,朗兰兹纲领由许多非常普遍和相互关联的理论组成,特别有助于解释数论中的许多现象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Herzig, Florian其他文献

General Serre weight conjectures
Adequate subgroups and indecomposable modules
充分子群和不可分解模

Herzig, Florian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Herzig, Florian', 18)}}的其他基金

On the p-adic Langlands program
关于 p-adic 朗兰兹纲领
  • 批准号:
    RGPIN-2018-05741
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
On the p-adic Langlands program
关于 p-adic 朗兰兹纲领
  • 批准号:
    RGPIN-2018-05741
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
On the p-adic Langlands program
关于 p-adic 朗兰兹纲领
  • 批准号:
    RGPIN-2018-05741
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
On the p-adic Langlands program
关于 p-adic 朗兰兹纲领
  • 批准号:
    RGPIN-2018-05741
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
On the p-adic Langlands program
关于 p-adic 朗兰兹纲领
  • 批准号:
    RGPIN-2018-05741
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Serre-type conjectures and mod p Langlands correspondences
Serre 型猜想和 mod p Langlands 对应
  • 批准号:
    402885-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Serre-type conjectures and mod p Langlands correspondences
Serre 型猜想和 mod p Langlands 对应
  • 批准号:
    402885-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Serre-type conjectures and mod p Langlands correspondences
Serre 型猜想和 mod p Langlands 对应
  • 批准号:
    402885-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Serre-type conjectures and mod p Langlands correspondences
Serre 型猜想和 mod p Langlands 对应
  • 批准号:
    402885-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Serre-type conjectures and mod p Langlands correspondences
Serre 型猜想和 mod p Langlands 对应
  • 批准号:
    402885-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

铋基邻近双金属位点Type B异质结光热催化合成氨机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    30.0 万元
  • 项目类别:
    省市级项目
盐皮质激素受体抑制2型固有淋巴细胞活化加重心肌梗死后心室重构的作用机制
  • 批准号:
    82372202
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
损伤线粒体传递机制介导成纤维细胞/II型肺泡上皮细胞对话在支气管肺发育不良肺泡发育阻滞中的作用
  • 批准号:
    82371721
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
GPSM1介导Ca2+循环-II型肌球蛋白网络调控脂肪产热及代谢稳态的机制研究
  • 批准号:
    82370879
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
二型聚合函数基于扩展原理的构造与表示问题
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
智能型Type-I光敏分子构效设计及其抗耐药性感染研究
  • 批准号:
    22207024
  • 批准年份:
    2022
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
真菌中I型-III型聚酮杂合类天然产物的基因组挖掘
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
TypeⅠR-M系统在碳青霉烯耐药肺炎克雷伯菌流行中的作用机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
替加环素耐药基因 tet(A) type 1 变异体在碳青霉烯耐药肺炎克雷伯菌中的流行、进化和传播
  • 批准号:
    LY22H200001
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向手性α-氨基酰胺药物的新型不对称Ugi-type 反应开发
  • 批准号:
    LY22B020003
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Serre-type conjectures and mod p Langlands correspondences
Serre 型猜想和 mod p Langlands 对应
  • 批准号:
    402885-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Serre-type conjectures and mod p Langlands correspondences
Serre 型猜想和 mod p Langlands 对应
  • 批准号:
    402885-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Conjectures associated with Brascamp-Lieb type inequalities
与 Brascamp-Lieb 型不等式相关的猜想
  • 批准号:
    16H05995
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Serre-type conjectures and mod p Langlands correspondences
Serre 型猜想和 mod p Langlands 对应
  • 批准号:
    402885-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Serre-type conjectures and mod p Langlands correspondences
Serre 型猜想和 mod p Langlands 对应
  • 批准号:
    402885-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Organising matrices, height pairings and refined conjectures ofthe Birch and Swinnerton-Dyer type
Birch 和 Swinnerton-Dyer 类型的组织矩阵、高度配对和精确猜想
  • 批准号:
    229603592
  • 财政年份:
    2012
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Research Grants
Serre-type conjectures and mod p Langlands correspondences
Serre 型猜想和 mod p Langlands 对应
  • 批准号:
    402885-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Serre-type conjectures and mod p Langlands correspondences
Serre 型猜想和 mod p Langlands 对应
  • 批准号:
    402885-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Serre-type conjectures and mod p Langlands correspondences
Serre 型猜想和 mod p Langlands 对应
  • 批准号:
    0902044
  • 财政年份:
    2009
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Points of Integral Models of Shimura Varieties of Hodege Type and the Tate and Langlands--Rapoport Conjectures
Hodege型志村品种与Tate和Langlands积分模型的要点--拉波波特猜想
  • 批准号:
    0900967
  • 财政年份:
    2009
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了