Extreme Values of Highly Correlated Gaussian processes: a study of spin glasses and related models
高度相关高斯过程的极值:自旋玻璃及相关模型的研究
基本信息
- 批准号:418060-2012
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2013
- 资助国家:加拿大
- 起止时间:2013-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding the statistics of large values in stochastic processes and their universality is a long-standing goal of probability theory with direct applications in diverse areas. Starting in the 1930s, extreme value theory has identified universal properties of the statistics of extreme values of weakly dependent variables. For variables with strong correlations, the problem is more complex. However, significant progress has been made in the past twenty years. Like many breakthroughs in probability, new ideas have often emerged from a deep interplay with physics and statistical mechanics. The proposed research program continues in this spirit, aiming to identify and describe universality classes for the statistics of extreme values of highly correlated variables. The focus is on Gaussian processes in high dimensions and with strong correlations that arise in statistical mechanics. Important examples include spin glasses, such as the Sherrington-Kirkpatrick (SK) model and the Edwards-Anderson (EA) model, as well as branching Brownian motion (BBM) and the Gaussian free field (GFF). A body of bold conjectures was proposed in the 1980s by physicists to describe the complexity of the correlations of such systems. These questions remain largely open to this day. The long-term objectives aim to rigorously establish and extend the ideas of the theory. The directions for the next five years are:
理解随机过程中大值的统计及其普遍性是概率论的一个长期目标,在不同领域有着直接的应用。从20世纪30年代开始,极值理论已经确定了弱相依变量极值统计的普遍性质。对于具有强相关性的变量,问题更加复杂。然而,在过去20年中取得了重大进展。就像概率论中的许多突破一样,新的想法往往是从物理学和统计力学的深刻相互作用中产生的。拟议的研究计划继续在这种精神,旨在确定和描述的普适性类的高度相关的变量的极端值的统计。重点是在高维高斯过程和统计力学中出现的强相关性。重要的例子包括自旋玻璃,如谢灵顿-柯克帕特里克(SK)模型和爱德华-安德森(EA)模型,以及分支布朗运动(BBM)和高斯自由场(GFF)。20世纪80年代,物理学家们提出了一系列大胆的假设来描述这类系统的复杂性。这些问题直到今天仍然很大程度上没有解决。长期目标是严格建立和扩展理论的思想。未来五年的方向是:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arguin, LouisPierre其他文献
Arguin, LouisPierre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arguin, LouisPierre', 18)}}的其他基金
Extreme Values of Highly Correlated Gaussian processes: a study of spin glasses and related models
高度相关高斯过程的极值:自旋玻璃及相关模型的研究
- 批准号:
418060-2012 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Extreme Values of Highly Correlated Gaussian processes: a study of spin glasses and related models
高度相关高斯过程的极值:自旋玻璃及相关模型的研究
- 批准号:
418060-2012 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Extreme Values of Highly Correlated Gaussian processes: a study of spin glasses and related models
高度相关高斯过程的极值:自旋玻璃及相关模型的研究
- 批准号:
418060-2012 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Building Desirable and Resilient Public Media Futures: Establishing the Centre for Public Values, Technology & Society
建设理想且有弹性的公共媒体未来:建立公共价值观和技术中心
- 批准号:
MR/X033651/1 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Fellowship
CRII: SHF: Theoretical Foundations of Verifying Function Values and Reducing Annotation Overhead in Automatic Deductive Verification
CRII:SHF:自动演绎验证中验证函数值和减少注释开销的理论基础
- 批准号:
2348334 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Restoring & future-proofing the biocultural values of endangered seagrasses
正在恢复
- 批准号:
LP220200950 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Linkage Projects
Investigating the archaeological values of Marra cultural heritage sites
调查马拉文化遗产地的考古价值
- 批准号:
LP220100143 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Linkage Projects
若者支援/Youth Work/Informal教育のCore Values共有化の方法をめぐる国際共同研究
国际联合研究共享青年支持/青年工作/非正式教育核心价值观的方法
- 批准号:
24K00379 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
U.S. participation in the 8th wave of the World Values Survey
美国参与第八波世界价值观调查
- 批准号:
2331175 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
DEVAL - Democratic Values and Authoritarian Legitimacy
DEVAL - 民主价值观和威权合法性
- 批准号:
EP/Y036832/1 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Research Grant
The influence of ethical and social values on decision-making about participation in personalized breast cancer screening: A constructivist grounded theory study of South Asian people in Canada
伦理和社会价值观对参与个性化乳腺癌筛查决策的影响:针对加拿大南亚人的建构主义扎根理论研究
- 批准号:
491227 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Fellowship Programs
Development of the assessment method to quantify the physical coordination ability of children: through the evaluation using muscle coherence values.
量化儿童身体协调能力的评估方法的开发:通过肌肉一致性值的评估。
- 批准号:
23K10740 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The dawn of modular phenomena for higher level multiple zeta values with a new development on multiple Eisenstein series
随着多个爱森斯坦级数的新发展,更高水平的多个 zeta 值的模块化现象的曙光
- 批准号:
23K03034 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)