Ignition and Transition to Detonation - Interplay between Gas Dynamics and Chemical Kinetics
点火和爆炸过渡 - 气体动力学和化学动力学之间的相互作用
基本信息
- 批准号:RGPIN-2014-04452
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Hydrogen is an attractive automotive fuel because it burns without releasing CO2 or other greenhouse gases, and because it is the fuel of choice for fuel cells. Hydrogen is also used in oil sand processing. Hydrogen production from hydro power or wind energy is carbon-neutral. However, because hydrogen has a markedly different behaviour when compared with hydrocarbon fuels, there are significant safety issues that need to be resolved before widespread hydrogen storage and distribution facilities such as refuelling stations are allowed in close contact with populated areas, which will be needed if hydrogen is used as an automotive fuel. Likewise, there are safety issues associated with hydrogen storage in vehicles in tunnels and public garages. Because hydrogen is very light and buoyant, outdoors installations can normally be made safe by ensuring that there is enough distance around where the public is not allowed. However, in enclosed environments such as tunnels and garages, in which hydrogen can accumulate, a serious safety issue is the risk of detonation, which is very difficult to deal with. This is particularly important because hydrogen is much more prone to than other fuels. Detonation is the most violent form of combustion, in which combustion rides on a shock wave which it also supports. Thus detonation waves travel at high supersonic speeds as long as they encounter combustible mixture, and they entail a pressure increase usually in the tens of atmospheres, which is quite destructive. Thus a detonation in a tunnel could result in very bad accidents more serious than for instant the Mont-Blanc tunnel fire, a few years ago, not only because of high pressure, but because it might propagate over considerable distances. Unfortunately, major uncertainties remain on the mechanisms leading to detonation, even for hydrogen, the chemistry of which is better known than other more complex fuels, at least at relatively low pressures. The first goal of the current work is to clarify the relationship between specific features of hydrogen chemistry and both the structure and the appearance of a detonation. To that effect, numerical simulation and mathematical analysis will be performed for a hierarchy of scenarios involving chemical kinetic models of increasing complexity, focusing upon two specific issues. The first is flame acceleration in a tube, which entails flame oscillations, potentially leading to appearance of a detonation wave. The second has to do with detonation cells. Detonation waves are observed to draw cell-like patterns on tube walls. The process whereby this occurs is well-understood, but the mechanism that determines the maximum size of these cells is not known. In addition, there is reliable experimental evidence showing that a sudden release of high pressure hydrogen into the atmosphere may ignite spontaneously, under a mechanism that is not well understood, called jet ignition or spontaneous ignition. From a safety perspective, this is a double-edged sword in that in some scenarios, jet ignition may favor safety, while in others, it will trigger a fire. The goal of the current work is to clarify the relationship between specific features of realistic hydrogen chemistry and spontaneous jet ignition. To that effect, numerical simulation and mathematical analysis will be performed for a hierarchy of increasingly more complex and realistic chemical kinetic models. Our previous work has identified one key property of hydrogen, in which it differs from hydrocarbon fuels, which plays a crucial role: with its small molecule, hydrogen diffuses more rapidly than air, hence bringing fuel where ignitino will likely take place. Proposed studies will confirm the role of this mechanism using realistic chemical kinetics.
氢是一种有吸引力的汽车燃料,因为它燃烧时不会释放二氧化碳或其他温室气体,也因为它是燃料电池的首选燃料。氢气也用于油砂加工。水力发电或风能产生的氢气是碳中性的。然而,由于与碳氢燃料相比,氢的行为明显不同,在允许广泛的氢气储存和分配设施(如加气站)与人口稠密地区密切接触之前,需要解决重大的安全问题。如果将氢气用作汽车燃料,将需要这些设施。同样,在隧道和公共车库的车辆中储存氢气也存在安全问题。由于氢气非常轻且具有浮力,通常可以通过确保不允许公众进入的地方周围有足够的距离来确保户外设施的安全。然而,在隧道和车库等封闭环境中,氢气可能会积累,一个严重的安全问题是爆炸风险,这是非常难以处理的。这一点特别重要,因为氢比其他燃料更容易产生。爆震是最猛烈的燃烧形式,燃烧依靠冲击波进行,冲击波也受到它的支持。因此,只要与可燃混合物相遇,爆轰波就以高超音速传播,通常在几十个大气压下会导致压力增加,这是相当具破坏性的。因此,隧道中的一次爆炸可能会导致非常严重的事故,比几年前的勃朗峰隧道火灾更严重,这不仅是因为高压,而且因为它可能会传播到相当远的距离。不幸的是,导致爆炸的机制仍然存在重大不确定性,即使是氢气也是如此,氢气的化学成分比其他更复杂的燃料更为人所知,至少在相对较低的压力下是这样。目前工作的第一个目标是澄清氢化学的具体特征与爆炸的结构和外观之间的关系。为此,将对涉及日益复杂的化学动力学模型的一系列情景进行数值模拟和数学分析,重点是两个具体问题。首先是管子内火焰的加速,这会导致火焰振荡,可能会导致爆震波的出现。第二个问题与爆炸单元有关。观察到爆轰波在管壁上画出胞状图案。发生这种情况的过程是众所周知的,但决定这些细胞最大尺寸的机制尚不清楚。此外,有可靠的实验证据表明,高压氢突然释放到大气中可能会自燃,其机制尚不清楚,称为喷气点火或自燃。从安全角度来看,这是一把双刃剑,因为在某些情况下,喷气式点火可能有利于安全,而在另一些情况下,它会引发火灾。当前工作的目标是澄清现实氢化学的特定特征与喷注自发点火之间的关系。为此,将对一系列日益复杂和现实的化学动力学模型进行数值模拟和数学分析。我们之前的工作已经确定了氢的一个关键属性,在这一点上,它不同于碳氢燃料,后者发挥着关键作用:由于其分子较小,氢的扩散速度比空气更快,因此将燃料带到可能发生引燃的地方。拟议的研究将使用真实的化学动力学来证实这一机制的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bauwens, Luc其他文献
On marginal likelihood computation in change-point models
- DOI:
10.1016/j.csda.2010.06.025 - 发表时间:
2012-11-01 - 期刊:
- 影响因子:1.8
- 作者:
Bauwens, Luc;Rombouts, Jeroen V. K. - 通讯作者:
Rombouts, Jeroen V. K.
Modeling the Dependence of Conditional Correlations on Market Volatility
- DOI:
10.1080/07350015.2015.1037882 - 发表时间:
2016-04-02 - 期刊:
- 影响因子:3
- 作者:
Bauwens, Luc;Otranto, Edoardo - 通讯作者:
Otranto, Edoardo
DCC- and DECO-HEAVY: Multivariate GARCH models based on realized variances and correlations
- DOI:
10.1016/j.ijforecast.2022.03.005 - 发表时间:
2023-03-04 - 期刊:
- 影响因子:7.9
- 作者:
Bauwens, Luc;Xu, Yongdeng - 通讯作者:
Xu, Yongdeng
Theory and inference for a Markov switching GARCH model
- DOI:
10.1111/j.1368-423x.2009.00307.x - 发表时间:
2010-01-01 - 期刊:
- 影响因子:1.9
- 作者:
Bauwens, Luc;Preminger, Arie;Rombouts, Jeroen V. K. - 通讯作者:
Rombouts, Jeroen V. K.
Bauwens, Luc的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bauwens, Luc', 18)}}的其他基金
Role of chemical kinetics on detonation stability and cell sizes
化学动力学对爆炸稳定性和泡孔尺寸的作用
- 批准号:
RGPIN-2020-04201 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Role of chemical kinetics on detonation stability and cell sizes
化学动力学对爆炸稳定性和泡孔尺寸的作用
- 批准号:
RGPIN-2020-04201 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Role of chemical kinetics on detonation stability and cell sizes
化学动力学对爆炸稳定性和泡孔尺寸的作用
- 批准号:
RGPIN-2020-04201 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ignition and Transition to Detonation - Interplay between Gas Dynamics and Chemical Kinetics
点火和爆炸过渡 - 气体动力学和化学动力学之间的相互作用
- 批准号:
RGPIN-2014-04452 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ignition and Transition to Detonation - Interplay between Gas Dynamics and Chemical Kinetics
点火和爆炸过渡 - 气体动力学和化学动力学之间的相互作用
- 批准号:
RGPIN-2014-04452 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ignition and Transition to Detonation - Interplay between Gas Dynamics and Chemical Kinetics
点火和爆炸过渡 - 气体动力学和化学动力学之间的相互作用
- 批准号:
RGPIN-2014-04452 - 财政年份:2016
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ignition and Transition to Detonation - Interplay between Gas Dynamics and Chemical Kinetics
点火和爆炸过渡 - 气体动力学和化学动力学之间的相互作用
- 批准号:
RGPIN-2014-04452 - 财政年份:2015
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ignition and transition to detonation under chain-branching kinetics
链支化动力学下的点火和爆炸转变
- 批准号:
137983-2009 - 财政年份:2013
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ignition and transition to detonation under chain-branching kinetics
链支化动力学下的点火和爆炸转变
- 批准号:
137983-2009 - 财政年份:2012
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ignition and transition to detonation under chain-branching kinetics
链支化动力学下的点火和爆炸转变
- 批准号:
137983-2009 - 财政年份:2011
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
以果蝇为模式研究纤毛过渡纤维(Transition fibers)的形成和功能
- 批准号:31871357
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Ignition and Transition to Detonation - Interplay between Gas Dynamics and Chemical Kinetics
点火和爆炸过渡 - 气体动力学和化学动力学之间的相互作用
- 批准号:
RGPIN-2014-04452 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ignition and Transition to Detonation - Interplay between Gas Dynamics and Chemical Kinetics
点火和爆炸过渡 - 气体动力学和化学动力学之间的相互作用
- 批准号:
RGPIN-2014-04452 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ignition and Transition to Detonation - Interplay between Gas Dynamics and Chemical Kinetics
点火和爆炸过渡 - 气体动力学和化学动力学之间的相互作用
- 批准号:
RGPIN-2014-04452 - 财政年份:2016
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ignition and Transition to Detonation - Interplay between Gas Dynamics and Chemical Kinetics
点火和爆炸过渡 - 气体动力学和化学动力学之间的相互作用
- 批准号:
RGPIN-2014-04452 - 财政年份:2015
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ignition and transition to detonation under chain-branching kinetics
链支化动力学下的点火和爆炸转变
- 批准号:
137983-2009 - 财政年份:2013
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ignition and transition to detonation under chain-branching kinetics
链支化动力学下的点火和爆炸转变
- 批准号:
137983-2009 - 财政年份:2012
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Turbulance modelling and the role of micro-scale mixing in compressible jet ignition and deflagration to detonation transition problems
湍流建模以及微尺度混合在可压缩射流点火和爆燃到爆炸转变问题中的作用
- 批准号:
434709-2012 - 财政年份:2012
- 资助金额:
$ 1.97万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Ignition and transition to detonation under chain-branching kinetics
链支化动力学下的点火和爆炸转变
- 批准号:
137983-2009 - 财政年份:2011
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ignition and transition to detonation under chain-branching kinetics
链支化动力学下的点火和爆炸转变
- 批准号:
137983-2009 - 财政年份:2010
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ignition and transition to detonation under chain-branching kinetics
链支化动力学下的点火和爆炸转变
- 批准号:
137983-2009 - 财政年份:2009
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




