Structure of Banach algebras over locally compact groups

局部紧群上的 Banach 代数的结构

基本信息

  • 批准号:
    RGPIN-2014-05354
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

My main field of research is harmonic analysis with an emphasis on non-commutative groups such as amenable groups and Lie groups. Harmonic analysis is a branch of mathematics concerned with the representation of functions, signals, or waves using Fourier series and Fourier transforms. It has become a vast subject with applications in areas such as signal processing and quantum mechanics over the past two centuries. The research projects that I pursue primarily relate to more modern branches of harmonic analysis and is about the understanding of the structure of various Banach algebras related to locally compact groups, including group algebras and Fourier algebras. My objective is to study in a deeper level the structure of these algebras and their relation to the representations of the groups. One aspect of the structure theory of Banach algebras over locally compact groups I am interested in deals with cohomological properties of these algebras. The seminal paper in this respect is certainly B. E. Johnson’s memoir in 1972 in which he introduces and explores the concept of amenability for a Banach algebra. Z-J Ruan’s fundamental work in 1995 of introducing the concept of operator amenability, through the theory of operator spaces, and applying it in non-commutative harmonic analysis has also had a significant influence on this area. An important open problem in this area is the characterization of the weak amenability of the Fourier algebra on non-compact connected groups (the compact and some non-compact cases have already been established). One research project I plan to pursue is to investigate a more general property, namely the failure of spectral synthesis of the antidiagonal for non-abelian, non-compact connected groups. It is expected that this will imply the failure of the weak amenability and provide more such examples. I will also look at the “local behavior” of their Hochschild cohomology. The overall goal is to get more information about the structure of the algebras or the groups using these results. Another research project of mine deals with "non-communicative" analogue of Beurling algebras. These algebras have played important roles in different areas of harmonic analysis. They are L^1-algebras associated to locally compact groups when we put extra "weights" on the groups. With my co-author H. H. Lee, we developed the corresponding "dual theory" and created the Beurling-Fourier algebras (shortly BF algebras). In several co-authored research projects, I have shown that in some aspect, they behave similar to the classical Beurling algebras whereas in others, they behave very differently. However, this theory is very recent and subsequently there is still much research to be completed concerning them. From one direction, more detailed study of BF algebras on compact groups must be conducted. We also need to investigate BF algebras on non-compact, non-abelian groups e.g. Heisenberg groups and the ax+b-group. The research I am planning to pursue using my NSERC Discovery grant is all a continuation of my work in the past 10 years. I am happy to report that the results obtained so far have been substantial and have received positive reviews from other experts in the fields. Canada is growing as one of the research-intensive countries in the world, and to make sure we continue as such, we need to not only maintain our research programs but also grow and expand them. One necessary means, among many others, is to have faculties with strong research initiatives and programs in all areas of science and technologies including mathematics. The research projects I have outlined above will be part of many streams of research being conducted across the country. This will have a great and positive impact in our future.
我的主要研究领域是谐波分析,重点是非交换群,如可调群和李群。谐波分析是用傅立叶级数和傅立叶变换表示函数、信号或波的数学分支。在过去的两个世纪里,它已经成为一个广泛的学科,在信号处理和量子力学等领域得到了应用。我所从事的研究项目主要涉及调和分析的现代分支,是关于理解与局部紧群相关的各种巴拿赫代数的结构,包括群代数和傅立叶代数。我的目标是在更深层次上研究这些代数的结构以及它们与群表示的关系。我感兴趣的局部紧群上的巴拿赫代数结构理论的一个方面是处理这些代数的上同调性质。这方面的开创性论文当然是b.e. Johnson在1972年的回忆录,他在其中介绍并探讨了巴拿赫代数的适应性概念。阮泽俊1995年通过算子空间理论引入算子可调和的概念,并将其应用于非交换调和分析的基础性工作也对这一领域产生了重大影响。该领域的一个重要开放问题是傅里叶代数在非紧连通群(紧和一些非紧的情况已经建立)上的弱适应性的刻画。我计划进行的一个研究项目是研究一个更一般的性质,即非阿贝尔、非紧连接群的反对角的谱合成的失败。预计这将意味着弱适应性的失败,并提供更多这样的例子。我还将研究它们的Hochschild上同调的“局部行为”。总体目标是利用这些结果获得关于代数或群的结构的更多信息。我的另一个研究项目涉及贝格林代数的“非交流”模拟。这些代数在调和分析的不同领域发挥了重要作用。当我们在群上加额外的“权”时,它们是与局部紧群相关的L^1代数。与我的合作者h.h. Lee一起,我们发展了相应的“对偶理论”,并创建了Beurling-Fourier代数(简称BF代数)。在几个合著的研究项目中,我已经证明,在某些方面,它们的行为与经典的伯林代数相似,而在其他方面,它们的行为却截然不同。然而,这一理论是最近才出现的,因此还有很多研究需要完成。从一个方向上,必须对紧群上的BF代数进行更详细的研究。我们还需要研究非紧非阿贝尔群(如Heisenberg群和ax+b群)上的BF代数。我计划用我的NSERC发现基金进行的研究都是我过去10年工作的延续。我高兴地报告,迄今取得的成果是实质性的,并得到了该领域其他专家的积极评价。加拿大正在成长为世界上研究密集型国家之一,为了确保我们继续这样做,我们不仅需要维持我们的研究项目,还需要发展和扩大它们。在许多其他手段中,一个必要的手段是在包括数学在内的所有科学和技术领域拥有强大的研究倡议和项目的院系。我上面概述的研究项目将是全国正在进行的许多研究流的一部分。这将对我们的未来产生巨大而积极的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samei, Ebrahim其他文献

Samei, Ebrahim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samei, Ebrahim', 18)}}的其他基金

Interplay between harmonic analysis and operator algebras
调和分析与算子代数之间的相互作用
  • 批准号:
    RGPIN-2019-04420
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Interplay between harmonic analysis and operator algebras
调和分析与算子代数之间的相互作用
  • 批准号:
    RGPIN-2019-04420
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Interplay between harmonic analysis and operator algebras
调和分析与算子代数之间的相互作用
  • 批准号:
    RGPIN-2019-04420
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Interplay between harmonic analysis and operator algebras
调和分析与算子代数之间的相互作用
  • 批准号:
    RGPIN-2019-04420
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Structure of Banach algebras over locally compact groups
局部紧群上的 Banach 代数的结构
  • 批准号:
    RGPIN-2014-05354
  • 财政年份:
    2018
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Structure of Banach algebras over locally compact groups
局部紧群上的 Banach 代数的结构
  • 批准号:
    RGPIN-2014-05354
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Structure of Banach algebras over locally compact groups
局部紧群上的 Banach 代数的结构
  • 批准号:
    RGPIN-2014-05354
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Structure of Banach algebras over locally compact groups
局部紧群上的 Banach 代数的结构
  • 批准号:
    RGPIN-2014-05354
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Cohomological properties of group algebras and Fourier algebras
群代数和傅里叶代数的上同调性质
  • 批准号:
    366066-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Cohomological properties of group algebras and Fourier algebras
群代数和傅里叶代数的上同调性质
  • 批准号:
    366066-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Banach空间上多变量算子的若干问题
  • 批准号:
    12371139
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
Banach空间非线性粗等距的稳定性及其应用
  • 批准号:
    12301163
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
相关于球拟Banach函数空间的Besov空间和Triebel-Lizorkin空间的实变理论及其应用
  • 批准号:
    12301112
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Banach空间非线性等距理论的研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
交换子在球Banach函数空间上的有界性和紧性特征
  • 批准号:
    12301123
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
泛函不等式及其在Banach空间理论与非交换分析中的应用
  • 批准号:
    2023JJ40696
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Banach空间上非交换的非线性算子拓扑半群的遍历理论及其应用
  • 批准号:
    12371140
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
Banach空间中关于变分不等式问题的外梯度迭代算法研究
  • 批准号:
    12301159
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
有逼近性质或(余)型的Banach上的扩张问题的研究
  • 批准号:
    12301162
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
Banach空间几何理论在凸微分分析和广义逆上的应用
  • 批准号:
    12271121
  • 批准年份:
    2022
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目

相似海外基金

Structure of Banach algebras over locally compact groups
局部紧群上的 Banach 代数的结构
  • 批准号:
    RGPIN-2014-05354
  • 财政年份:
    2018
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Structure of Banach algebras over locally compact groups
局部紧群上的 Banach 代数的结构
  • 批准号:
    RGPIN-2014-05354
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Study on preserver problems on Banach algebras and gyro-structure
Banach代数和陀螺结构的保存问题研究
  • 批准号:
    16K05172
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure of Banach algebras over locally compact groups
局部紧群上的 Banach 代数的结构
  • 批准号:
    RGPIN-2014-05354
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Structure of Banach algebras over locally compact groups
局部紧群上的 Banach 代数的结构
  • 批准号:
    RGPIN-2014-05354
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Structure of Banach algebras and their ideals
Banach代数的结构及其理想
  • 批准号:
    238949-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Structure of Banach algebras and their ideals
Banach代数的结构及其理想
  • 批准号:
    238949-2005
  • 财政年份:
    2008
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Structure of Banach algebras and their ideals
Banach代数的结构及其理想
  • 批准号:
    238949-2005
  • 财政年份:
    2007
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Structure of Banach algebras and their ideals
Banach代数的结构及其理想
  • 批准号:
    238949-2005
  • 财政年份:
    2006
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Structure of Banach algebras and their ideals
Banach代数的结构及其理想
  • 批准号:
    238949-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了