Controlling Quantum States using Phononic Crystals
使用声子晶体控制量子态
基本信息
- 批准号:RGPIN-2014-05701
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Repetition. There is power and beauty in repetition. The brilliant colours floating on the wings of certain butterfly species are not produced by dyes or pigments, but rather from repetitious features in the scales of its wings. Consider a diamond—the repetitive arrangement of atoms in its crystal determines why diamond is so beautifully transparent, but a single flaw can trap light so that it cannot escape. Repetition is not only aesthetically pleasing, but so captivating in art and nature that each individual, identical cell can be analyzed with unwavering interest. However, a small flaw or interruption of the repetition is powerful enough to trap one's gaze. The research program proposed here will harness that same foundation of repetition used to reflect light producing brilliant colours and instead apply it to sound. The sound comes in the form of surfaces acoustic waves (SAWs), which are vibrations of a solid skimming across its surface. In fact, they are smaller scaled versions (by nine orders of magnitude) of the most damaging components of an earthquake: the Rayleigh waves. The SAWs can then be thought of as “nano-earthquakes” that can fit on a microchip and be electrically generated. To create our butterfly wing on a chip, a repetitive, periodic array of nanofabricated holes are drilled, called a phononic crystal (PnC). Like the wings of a butterfly that only reflect light at certain wavelengths, the periodicity of the PnC array and the size of its holes dictate what wavelengths of SAWs will be affected. More interestingly, the PnC can be interrupted by omitting a row of holes in the array. This interruption can then trap SAWs and force them to travel along it inside the phononic crystal. In past work, we have shown that nano-earthquakes are able to move and manipulate electrons while preserving their quantum mechanical spin state. In a manner similar to a surfer riding an ocean wave, the SAW creates a moving electric field that can push electronic charges across the microchip. To transport quantum information, the electron can be initialized in a quantum “up” or “down” spin state, correlating to binary “0” and “1”, which can then be moved along by the SAW. The goals of this proposed program are twofold. The first is to design, fabricate, and test new PnC designs to control the path of a SAW. In particular, PnCs in GaAs-based systems will be targeted so that our acoustic systems can eventually couple to semiconductor nanostructures. As SAW devices are widely used in mobile communications today, continued research into complex PnC-based geometries may extend to develop new types of SAW devices for mobile technologies based on PnCs. The second and primary goal of the research proposal is to use SAWs to coherently transport electrons and their spin information along a PnC waveguide. Ultimately, the waveguides would become more complex, thus creating a novel phononic circuit through which quantum information can flow and be computed. The potential for this platform is unique to Queen's University, where Dr. Stotz and his group have expertise in both modelling, designing, and fabricating PnC structures as well as using SAWs to coherently transport electron spins. Through the study of PnCs and spintronics, students will gain practical experience in a wide variety of areas such as semiconductor device fabrication, device modelling, rf-electronics, spectroscopy, and photonics. Furthermore, the students will be involved with project planning and assessment while working in a team-oriented environment. In addition to learning about power and beauty, HQP will develop a strong background for a broad range of careers in the photonic and IT segments that are important for economic expansion in Canada.
重复。重复中有力量,也有美。某些种类蝴蝶翅膀上漂浮的鲜艳色彩不是由染料或颜料产生的,而是由其翅膀鳞片上重复出现的特征产生的。以钻石为例--钻石晶体中原子的重复排列决定了为什么钻石如此美丽地透明,但一个单一的缺陷就能捕获光线,使其无法逃逸。重复不仅在美学上令人愉悦,而且在艺术和自然中如此迷人,以至于每个个体、相同的细胞都可以以坚定不移的兴趣进行分析。然而,重复的一个小瑕疵或中断就足以吸引一个人的目光。这里提出的研究计划将利用重复反射光线产生鲜艳色彩的相同基础,并将其应用于声音。声音以表面声波(SAW)的形式发出,这是固体掠过其表面的振动。事实上,它们是地震最具破坏性的组成部分瑞利波的较小规模版本(九个数量级)。然后,这些锯子就可以被认为是可以安装在微芯片上并通过电力产生的“纳米地震”。为了在芯片上制造蝴蝶翅膀,需要钻出一个重复的、周期性的纳米孔洞阵列,称为声子晶体(PNC)。就像蝴蝶的翅膀只反射特定波长的光一样,PNC阵列的周期和孔洞的大小决定了哪些波长的锯片将受到影响。更有趣的是,PNC可以通过省略阵列中的一排孔来中断。这种干扰会使锯子陷入困境,迫使它们在声子晶体内沿着锯子移动。在过去的工作中,我们已经证明了纳米地震能够移动和操纵电子,同时保持它们的量子力学自旋态。就像冲浪者在海浪中冲浪一样,锯子产生了一个移动的电场,可以推动电子电荷穿过微芯片。为了传输量子信息,电子可以被初始化为量子的“向上”或“向下”自旋状态,与二进制“0”和“1”相关,然后可以被声表面波移动。这一拟议计划的目标是双重的。第一个是设计、制造和测试新的PNC设计,以控制锯子的路径。特别是,我们将针对基于砷化镓的系统中的PNC,以便我们的声学系统最终能够耦合到半导体纳米结构上。随着声表面波器件在当今移动通信中的广泛应用,对基于PNC的复杂几何结构的持续研究可能会扩展到开发用于基于PNC的移动技术的新型声表面波器件。该研究提案的第二个也是主要目标是使用声表面波沿着PNC波导相干地传输电子及其自旋信息。最终,波导将变得更加复杂,从而创造出一种新的声子电路,量子信息可以在其中流动和计算。这一平台的潜力是皇后大学独有的,斯托茨博士和他的团队在建模、设计和制造PNC结构以及使用SAW连贯地传输电子自旋方面都拥有专业知识。通过学习PNC和自旋电子学,学生将在半导体器件制造、器件建模、射频电子学、光谱学和光子学等广泛领域获得实践经验。此外,学生将参与项目规划和评估,同时在团队导向的环境中工作。除了学习权力和美容,HQP还将为光子和IT领域的广泛职业发展奠定坚实的背景,这些领域对加拿大的经济扩张非常重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stotz, James其他文献
Stotz, James的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stotz, James', 18)}}的其他基金
Controlling Quantum States using Phononic Crystals
使用声子晶体控制量子态
- 批准号:
RGPIN-2014-05701 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Controlling Quantum States using Phononic Crystals
使用声子晶体控制量子态
- 批准号:
RGPIN-2014-05701 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Controlling Quantum States using Phononic Crystals
使用声子晶体控制量子态
- 批准号:
RGPIN-2014-05701 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Controlling Quantum States using Phononic Crystals
使用声子晶体控制量子态
- 批准号:
RGPIN-2014-05701 - 财政年份:2015
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Development of surface acoustic wave devices for commercial applications
开发用于商业应用的表面声波器件
- 批准号:
419110-2011 - 财政年份:2011
- 资助金额:
$ 2.11万 - 项目类别:
Interaction Grants Program
Acoustically induced electron spin transport in galium arsenide
砷化镓中的声诱导电子自旋输运
- 批准号:
328728-2006 - 财政年份:2010
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Nanostructured single and entangled photon sources for quantum information processing (applicant S. Hughes)
用于量子信息处理的纳米结构单光子源和纠缠光子源(申请人 S. Hughes)
- 批准号:
364254-2007 - 财政年份:2010
- 资助金额:
$ 2.11万 - 项目类别:
NRC-NSERC-BDC Nanotechnology Initiative
Nanostructured single and entangled photon sources for quantum information processing (applicant S. Hughes)
用于量子信息处理的纳米结构单光子源和纠缠光子源(申请人 S. Hughes)
- 批准号:
364254-2007 - 财政年份:2009
- 资助金额:
$ 2.11万 - 项目类别:
NRC-NSERC-BDC Nanotechnology Initiative
Acoustically induced electron spin transport in galium arsenide
砷化镓中的声诱导电子自旋输运
- 批准号:
328728-2006 - 财政年份:2009
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Acoustically induced electron spin transport in galium arsenide
砷化镓中的声诱导电子自旋输运
- 批准号:
328728-2006 - 财政年份:2008
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Understanding and Controlling Rydberg States in Solid-State Platforms for Quantum Technologies
理解和控制量子技术固态平台中的里德伯态
- 批准号:
2216838 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant
Controlling photochemistry via quantum superpositions of electronic states: towards attochemistry
通过电子态的量子叠加控制光化学:走向原子化学
- 批准号:
2601202 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Studentship
Controlling photophysics and photochemistry via quantum superpositions of electronic states: towards attochemistry
通过电子态的量子叠加控制光物理和光化学:走向原子化学
- 批准号:
EP/T006560/1 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Research Grant
Controlling photophysics and photochemistry via quantum superpositions of electronic states: towards attochemistry
通过电子态的量子叠加控制光物理和光化学:走向原子化学
- 批准号:
EP/T006943/1 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Research Grant
Controlling Quantum States using Phononic Crystals
使用声子晶体控制量子态
- 批准号:
RGPIN-2014-05701 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Controlling Quantum States using Phononic Crystals
使用声子晶体控制量子态
- 批准号:
RGPIN-2014-05701 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Field controlling of thermal conductivity in quantum magnetic ordered states
量子磁有序态热导率的场控制
- 批准号:
16K17753 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Controlling Quantum States using Phononic Crystals
使用声子晶体控制量子态
- 批准号:
RGPIN-2014-05701 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Controlling Quantum States using Phononic Crystals
使用声子晶体控制量子态
- 批准号:
RGPIN-2014-05701 - 财政年份:2015
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Controlling quantum well states and adsorbate positioning with self-assembled supramolecular architectures on surfaces
利用表面自组装超分子结构控制量子阱态和吸附物定位
- 批准号:
111287706 - 财政年份:2009
- 资助金额:
$ 2.11万 - 项目类别:
Research Grants