HALO - High Voltage System

HALO - 高压系统

基本信息

  • 批准号:
    SAPEQ-2014-00011
  • 负责人:
  • 金额:
    $ 1.87万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Subatomic Physics Envelope - Research Tools and Instruments
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

The HALO detector at SNOLAB has been designed to be a long-lifetime, low-maintenance dedicated supernova neutrino detector. It is also a detector of opportunity in the sense that it has been constructed largely from recycled materials made available to the HALO collaboration by previous experiments. In particular, the availability of 79 tonnes of lead blocks from a decommissioned cosmic ray station; an array of the world's lowest-radioactivity Helium-3 neutron detectors, originally built for the SNO experiment; and readout electronics also from the SNO experiment, has permitted the construction of HALO for a very modest public investment. Supernovae are cataclysmic events that occur at the end of the life cycle of a massive star. Core-collapse supernovae are characterized by the fleeting emission of astronomical numbers of neutrinos. Just as we have used neutrinos to look into the core of the sun, and to confirm that it is powered by nuclear fusion, we can, by detecting the energetic neutrinos from a supernova explosion, look into an exploding star anywhere within our galaxy. The detailed understanding of all the physical laws that govern what happens during a supernova is currently one of the grand challenges of computational physics. Intrinsically, supernovae are of fundamental importance and interest due to the fact that they are the site for the creation of the heavy elements, and that they are responsible for the dispersion of these elements within the galaxy. The detection of supernova neutrinos offers the possibility of advancing our knowledge by providing data against which computational models can be tested. There is a great potential to learn things both about the supernova process as well about the nature and interactions of neutrinos by making such a comparison. HALO detects supernova neutrinos by using lead as a target. Energetic neutrinos eject neutrons from the lead nuclei which are then captured by HALO's Helium-3 neutron detectors. On May 8th 2012 the HALO detector was fully operated for the first time. Since then it has been in near-continuous operation through a commissioning phase. We look forward in the very near future to joining the world-wide Supernova Early Warning System (SNEWS) which, since neutrinos escape an exploding star before the explosion itself actually reaches the surface of the star, permits neutrino detectors to inform astronomers of an impending supernova up to 10 hours before it is visible. HALO, in contrast to other supernova detector technologies, such as water Cherenkov and liquid scintillator detectors, is primarily sensitive to electron neutrinos, rather than electron anti-neutrinos, giving HALO a unique potential to contribute to the physics that will result from the next galactic supernova. Since galactic core-collapse supernovae are rare events occurring only a few times per century, and since they are also brief events with neutrino emission lasting less than a minute, HALO must strive for very high livetime to ensure its scientific impact. The initial electronics and data acquisition configuration of HALO, although operational and fully sensitive to a supernova in our galaxy, was created from the available SNO electronics, some of which was 20 years old. It did not have the redundancy and reliability needed to guarantee that HALO will remain live over the long anticipated life of the detector. Much progress has been made in working towards renewing critical components of the electronics, building in redundancy, and eliminating single points of failure. The only remaining detector element in need of renewal at this point is the High Voltage System. The objective of this grant application is close this gap and complete the electronics upgrade of HALO.
SNOLAB的HALO探测器被设计成长寿命、低维护的专用超新星中微子探测器。它也是一个机会探测器,因为它主要是由以前的实验提供给HALO合作的回收材料建造的。特别是,从一个退役的宇宙射线站获得了79吨的铅块;最初为SNO实验建造的世界上放射性最低的氦-3中子探测器阵列;以及也是从SNO实验获得的读出电子设备,使得能够以非常有限的公共投资建造HALO。超新星是发生在大质量星星生命周期末期的灾难性事件。核心坍缩超新星的特征是瞬间发射出天文数字的中微子。就像我们用中微子观察太阳的核心,并确认它是由核聚变提供能量一样,我们可以通过探测超新星爆炸产生的高能中微子,观察银河系中任何一颗爆炸的星星。详细了解超新星爆发期间发生的所有物理定律是目前计算物理学的重大挑战之一。事实上,超新星具有根本的重要性和兴趣,因为它们是创造重元素的场所,并且它们负责这些元素在星系内的分散。超新星中微子的探测提供了一种可能性,通过提供数据来测试计算模型,从而推进我们的知识。通过这样的比较,我们有很大的潜力来了解超新星过程以及中微子的性质和相互作用。HALO通过使用铅作为目标来探测超新星中微子。高能中微子从铅核中射出中子,然后被HALO的氦-3中子探测器捕获。2012年5月8日,HALO探测器首次全面运行。从那时起,它一直在通过调试阶段几乎连续运行。我们期待着在不久的将来加入世界范围的超新星早期预警系统,由于中微子在爆炸的星星实际到达星星表面之前就已逃逸,该系统使中微子探测器能够在超新星出现之前10小时通知天文学家即将发生的超新星。与其他超新星探测器技术(如水切伦科夫和液体闪烁体探测器)相比,HALO主要对电子中微子敏感,而不是电子反中微子,这使HALO具有独特的潜力,有助于下一个银河系超新星产生的物理学。由于星系核心坍缩超新星是罕见的事件,每世纪只发生几次,而且它们也是短暂的事件,中微子发射持续不到一分钟,因此HALO必须争取非常高的寿命,以确保其科学影响。HALO最初的电子设备和数据采集配置虽然可以运行,并且对我们银河系中的超新星完全敏感,但它是从现有的SNO电子设备中创建的,其中一些已经有20年的历史了。它不具备保证HALO在探测器的预期寿命内继续工作所需的冗余性和可靠性。在更新电子设备的关键部件、建立冗余和消除单点故障方面取得了很大进展。此时唯一需要更新的剩余探测器元件是高压系统。这项资助申请的目的是缩小这一差距,完成HALO的电子升级。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Virtue, Clarence其他文献

Virtue, Clarence的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Virtue, Clarence', 18)}}的其他基金

HALO-1kT at LNGS
LNGS 的 HALO-1kT
  • 批准号:
    SAPPJ-2019-00055
  • 财政年份:
    2022
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Subatomic Physics Envelope - Project
HALO-1kT at LNGS
LNGS 的 HALO-1kT
  • 批准号:
    SAPPJ-2019-00055
  • 财政年份:
    2021
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Subatomic Physics Envelope - Project
HALO-1kT at LNGS
LNGS 的 HALO-1kT
  • 批准号:
    SAPPJ-2019-00055
  • 财政年份:
    2020
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Subatomic Physics Envelope - Project
HALO-1kT at LNGS
LNGS 的 HALO-1kT
  • 批准号:
    SAPPJ-2019-00055
  • 财政年份:
    2019
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Subatomic Physics Envelope - Project
Neutron Detector R&D for HALO-1kT TDR
中子探测器 R
  • 批准号:
    SAPPJ-2017-00041
  • 财政年份:
    2018
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Subatomic Physics Envelope - Project
Neutron Detector R&D for HALO-1kT TDR
中子探测器 R
  • 批准号:
    SAPPJ-2017-00041
  • 财政年份:
    2017
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Subatomic Physics Envelope - Project
HALO at SNOLAB
SNOLAB 的光环
  • 批准号:
    SAPPJ-2014-00029
  • 财政年份:
    2016
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Subatomic Physics Envelope - Project
HALO at SNOLAB
SNOLAB 的光环
  • 批准号:
    SAPPJ-2014-00029
  • 财政年份:
    2015
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Subatomic Physics Envelope - Project
HALO at SNOLAB
SNOLAB 的光环
  • 批准号:
    SAPPJ-2014-00029
  • 财政年份:
    2014
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Subatomic Physics Envelope - Project
HALO at SNOLAB
SNOLAB 的光环
  • 批准号:
    355451-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Subatomic Physics Envelope - Project

相似海外基金

Study of voltage-distributed open coils for high-capacity and high-efficiency wireless power transmission system
大容量高效无线电力传输系统电压分布开路线圈研究
  • 批准号:
    23H01390
  • 财政年份:
    2023
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Condition Monitoring for High-Voltage Insulation System using Deep Learning based on Waveform Characteristics of Partial Discharge
基于局部放电波形特征的深度学习高压绝缘系统状态监测
  • 批准号:
    23K03792
  • 财政年份:
    2023
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Energy harvesting system using ultra-low voltage electronics for low power wide area distributed energy resources
使用超低压电子设备的能量收集系统,用于低功率广域分布式能源
  • 批准号:
    22H01465
  • 财政年份:
    2022
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
High Voltage Direct Current Test System
高压直流测试系统
  • 批准号:
    505072487
  • 财政年份:
    2022
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Major Research Instrumentation
High Voltage Alternating Current Test System
高压交流测试系统
  • 批准号:
    505072455
  • 财政年份:
    2022
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Major Research Instrumentation
High Voltage Pulsed Power Fragmentation System
高压脉冲功率破碎系统
  • 批准号:
    502345461
  • 财政年份:
    2022
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Major Research Instrumentation
Higher-level system for uniform condition assessment of medium-voltage power cables based on different diagnostic methods
基于不同诊断方法的中压电力电缆统一状态评估的高层系统
  • 批准号:
    416779391
  • 财政年份:
    2020
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Research Grants
High Voltage Integrated Battery Power-Electronics System (Hi-VIBES)
高压集成电池电力电子系统 (Hi-VIBES)
  • 批准号:
    43695
  • 财政年份:
    2020
  • 资助金额:
    $ 1.87万
  • 项目类别:
    BEIS-Funded Programmes
Study on an innovative battery management system integrating a high efficiency cell voltage balance function and a real time cell monitoring function
集成高效电池电压平衡功能和实时电池监控功能的创新电池管理系统研究
  • 批准号:
    19K14969
  • 财政年份:
    2019
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Multilevel converter topologies for medium voltage high power regenerative drive system
用于中压大功率再生驱动系统的多电平变换器拓扑
  • 批准号:
    509798-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 1.87万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了