Problems in algebraic combinatorics

代数组合问题

基本信息

  • 批准号:
    9439-2012
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Physicists, computer scientists and mathematicians are working to decide how we may best make use of quantum computers. Here the basic problem is to work out just what we might do with a quantum computer that we cannot do with the ordinary computers already on our desks. This raises many questions, and a number of these are related to problems that have long been studied by mathematicians. My research will concern three of these. (1) One of the strange features of quantum mechanics is that it is formulated in terms of complex, rather than real, space. A consequence of this is that questions about measurements are related to questions about certain families of lines in complex space. But the real analogs of these problems have already been extensively studied by mathematicians, and I would like to use these results as a guide to extend our knowledge in the complex case. (2) Operating a quantum computer will require us to move information around a network efficiently. One of the most efficient ways to do this involves what physicists call "perfect state transfer''. The underlying theory here is determined by the structure of the underlying network and, more precisely on the spectral properties of the underlying graph. This is a subject that mathematicians have studied for many years, and my aim is to apply what we have learned to these new problems. (3) Finally there are not many problems where we can expect a quantum computer to be more effective than a classical computer. One of these is the graph isomorphism problem. Physicists have proposed a number of algorithms for this, but cannot show that they will actually work in practice. I have shown that some of these do not work, and I plan to study the algorithms whose status is undecided.
物理学家、计算机科学家和数学家正在研究如何最好地利用量子计算机。这里的基本问题是,弄清楚我们可以用量子计算机做什么,而我们不能用桌上的普通计算机做什么。这就提出了许多问题,其中许多问题与数学家长期研究的问题有关。我的研究将涉及其中的三个方面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Godsil, Christopher其他文献

Godsil, Christopher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Godsil, Christopher', 18)}}的其他基金

Quantum walks and graph spectra
量子行走和图谱
  • 批准号:
    507923-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Quantum walks and graph spectra
量子行走和图谱
  • 批准号:
    507923-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Problems in algebraic combinatorics
代数组合问题
  • 批准号:
    9439-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Problems in algebraic combinatorics
代数组合问题
  • 批准号:
    9439-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Problems in algebraic combinatorics
代数组合问题
  • 批准号:
    9439-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Problems in algebraic combinatorics
代数组合问题
  • 批准号:
    9439-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Problems in algebraic combinatorics
代数组合问题
  • 批准号:
    9439-2004
  • 财政年份:
    2011
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Problems in algebraic combinatorics
代数组合问题
  • 批准号:
    9439-2004
  • 财政年份:
    2010
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Problems in algebraic combinatorics
代数组合问题
  • 批准号:
    9439-2004
  • 财政年份:
    2009
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Problems in algebraic combinatorics
代数组合问题
  • 批准号:
    9439-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Lienard系统的不变代数曲线、可积性与极限环问题研究
  • 批准号:
    12301200
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
对RS和AG码新型软判决代数译码的研究
  • 批准号:
    61671486
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Approaching some open problems in algebraic combinatorics and in C*-algebras theory using von Neumann algebras.
使用冯诺依曼代数解决代数组合学和 C* 代数理论中的一些开放问题。
  • 批准号:
    386687-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Problems in algebraic combinatorics
代数组合问题
  • 批准号:
    9439-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Approaching some open problems in algebraic combinatorics and in C*-algebras theory using von Neumann algebras.
使用冯诺依曼代数解决代数组合学和 C* 代数理论中的一些开放问题。
  • 批准号:
    386687-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Approaching some open problems in algebraic combinatorics and in C*-algebras theory using von Neumann algebras.
使用冯诺依曼代数解决代数组合学和 C* 代数理论中的一些开放问题。
  • 批准号:
    386687-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了