Confidential Reasoning about Data Using Abstract Types as Meaningful Proxies

使用抽象类型作为有意义代理的数据机密推理

基本信息

  • 批准号:
    89710-2013
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The goal of the proposed research is to develop a methodology and associated system of evaluation and refinement, for converting a large set of confidential data records into a set of abstract types that capture important trends and patterns in the data set without disclosing the information in any of the individual data records. Two major uses are anticipated for the resulting abstracted typology. First, the typology will represent a qualitative view of the data set that may help an organization such as a hospital or major retailer in understanding the overall structure of data. Second, abstract types derived from confidential data will inform applications that make recommendations based on knowledge embedded in that data. The proposed methodology will abstract typologies from confidential data using 1) feature extraction (reification of data variables into representation features that are representative of the major sources of variance in the data records), 2) iterative clustering of the data (using methods that do not expose individual data records to human view) and 3) review of types, created in each iteration, by domain experts to determine their representativeness. This research will lead to two major innovations. First, a methodology for creating data proxies that can service the needs of personalization and recommendation systems without requiring inspection of confidential data. Second, a set of derived abstract types that can stand as useful proxies for a large set of individuals and their confidential data. This research should lead to development of methods for identifying data proxies that can unleash the knowledge in confidential data and allow it to be exported for research use without exposing (or risking exposure of) the underlying data. Examples of applications that should benefit from this research include clinical decision support and event recommendation.
拟议研究的目标是制定一种评价和改进的方法和相关系统,以便将大量机密数据记录转换为一组抽象类型,以捕捉数据集中的重要趋势和模式,而不披露任何个别数据记录中的信息。由此产生的抽象类型学预计有两个主要用途。首先,类型学将代表数据集的定性视图,这可能有助于组织(如医院或大型零售商)理解数据的整体结构。其次,从机密数据派生的抽象类型将通知应用程序,这些应用程序根据嵌入在该数据中的知识提出建议。 拟议的方法将使用1)特征提取(将数据变量具体化为代表数据记录中的主要差异来源的表示特征)、2)数据的迭代聚类(使用不向人暴露个别数据记录的方法)和3)由领域专家在每次迭代中创建的类型审查来确定其代表性,从而从机密数据中提取类型。 这项研究将带来两大创新。首先,一种创建数据代理的方法,该方法可以服务于个性化和推荐系统的需求,而不需要检查机密数据。第二,一组派生的抽象类型,可以作为大量个人及其机密数据的有用代理。这项研究应该导致开发确定数据代理的方法,这些方法可以释放机密数据中的知识,并允许将其输出用于研究,而不暴露(或冒着暴露)基础数据的风险。应该从这项研究中受益的应用实例包括临床决策支持和事件推荐。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chignell, Mark其他文献

Can Cluster-Boosted Regression Improve Prediction of Death and Length of Stay in the ICU?
A meta-review of psychological resilience during COVID-19.
  • DOI:
    10.1038/s44184-022-00005-8
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seaborn, Katie;Henderson, Kailyn;Gwizdka, Jacek;Chignell, Mark
  • 通讯作者:
    Chignell, Mark
Physiotherapists' and Physiotherapy Students' Perspectives on the Use of Mobile or Wearable Technology in Their Practice
  • DOI:
    10.3138/ptc.2016-100.e
  • 发表时间:
    2018-06-01
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Blumenthal, Jenna;Wilkinson, Andrea;Chignell, Mark
  • 通讯作者:
    Chignell, Mark
Automatic detection of cohesive subgroups within social hypertext: A heuristic approach

Chignell, Mark的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chignell, Mark', 18)}}的其他基金

Dynamic Control of Task Demands in Mobile Contexts using Sensor Data and Adaptive User Models
使用传感器数据和自适应用户模型动态控制移动环境中的任务需求
  • 批准号:
    RGPIN-2018-06591
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic Control of Task Demands in Mobile Contexts using Sensor Data and Adaptive User Models
使用传感器数据和自适应用户模型动态控制移动环境中的任务需求
  • 批准号:
    RGPIN-2018-06591
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic Control of Task Demands in Mobile Contexts using Sensor Data and Adaptive User Models
使用传感器数据和自适应用户模型动态控制移动环境中的任务需求
  • 批准号:
    RGPIN-2018-06591
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic Control of Task Demands in Mobile Contexts using Sensor Data and Adaptive User Models
使用传感器数据和自适应用户模型动态控制移动环境中的任务需求
  • 批准号:
    RGPIN-2018-06591
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Market assessment for assistive devices for people with dementia
痴呆症患者辅助器具的市场评估
  • 批准号:
    523338-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Idea to Innovation
Dynamic Control of Task Demands in Mobile Contexts using Sensor Data and Adaptive User Models
使用传感器数据和自适应用户模型动态控制移动环境中的任务需求
  • 批准号:
    RGPIN-2018-06591
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Confidential Reasoning about Data Using Abstract Types as Meaningful Proxies
使用抽象类型作为有意义代理的数据机密推理
  • 批准号:
    89710-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Predicting likelihood to recommend and likelihood to churn based on cumulative experience of online services: modeling transitions in customer attitudes and behaviours
根据在线服务的累积经验预测推荐的可能性和流失的可能性:对客户态度和行为的转变进行建模
  • 批准号:
    477935-2014
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Predicting likelihood to recommend and likelihood to churn based on cumulative experience of online services: modeling transitions in customer attitudes and behaviours
根据在线服务的累积经验预测推荐的可能性和流失的可能性:对客户态度和行为的转变进行建模
  • 批准号:
    477935-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Confidential Reasoning about Data Using Abstract Types as Meaningful Proxies
使用抽象类型作为有意义代理的数据机密推理
  • 批准号:
    89710-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
  • 批准号:
    2348490
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
SHF: Medium: Reasoning about Multiplicity in the Machine Learning Pipeline
SHF:Medium:机器学习管道中多重性的推理
  • 批准号:
    2402833
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
Reasoning about Spatial Relations and Distributions: Supporting STEM Learning in Early Adolescence
空间关系和分布的推理:支持青春期早期的 STEM 学习
  • 批准号:
    2300937
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
BRITE Fellow: Autonomous Systems that Accommodate Human Perception and Reasoning about Uncertainty
BRITE 研究员:适应人类对不确定性的感知和推理的自治系统
  • 批准号:
    2227338
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Modeling the Conceptual Dynamics of College Students' Reasoning about Natural Selection
大学生自然选择推理的概念动态建模
  • 批准号:
    2300437
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
SHF: Small: Programming, and Reasoning about, Actors that Share State
SHF:小:共享状态的参与者的编程和推理
  • 批准号:
    2315884
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Computational Aspects of Reasoning about Dynamic Systems
动态系统推理的计算方面
  • 批准号:
    RGPIN-2022-05453
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Question Answering Systems by Reasoning About Context
通过推理上下文来改进问答系统
  • 批准号:
    544188-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Reasoning about Structured Story Representations
关于结构化故事表示的推理
  • 批准号:
    EP/W003309/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Fellowship
HCC: Medium: Improving data visualization and analysis tools to support reasoning about analysis assumptions
HCC:中:改进数据可视化和分析工具以支持分析假设的推理
  • 批准号:
    2211939
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了