Computer intensive statistical methods
计算机密集型统计方法
基本信息
- 批准号:137470-2008
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
R is an open source implementation of the S programming language. As a member of the "R Core Team", I share authorship in it. My particular interests are in user interface issues and graphics. In particular, in one effort I am working on improving the connections between the internals of R and the source code created by the user: this will improve the usability of R and will enable studies of programmer performance. Another ongoing effort is the incorporation of 3D graphics into R, through the rgl package.
In previous work, colleagues at the University of Toronto and I have shown how to evaluate the significance of millions of genetic tests in a computationally efficient way. Currently with one student I am investigating two related ideas: approximation of conditional significance, and approximation of multiple testing combinations. Another student and I are looking into choosing the most economical but informative model.
A third focus of my work will be perfect simulation. Markov chain Monte Carlo is a general computational technique for sampling from an arbitrary distribution (e.g. a posterior distribution in Bayesian inference). Until late 1995, it was thought that in almost all cases this would yield samples with distributions only approximating the target distribution. Propp and Wilson (1996) showed that in some cases it is possible to get exact samples; my work and work with Green several years ago extended this to distributions on
continuous and unbounded state spaces. Moreover, Propp and Wilson's ideas can be extended to other contexts such as perfect simulation of stochastic diffusions that follow stochastic differential equations. Another student and I are developing perfect simulations of maxima, minima, and barrier crossing times for "stochastic diffusions", models which are commonly used in financial modelling.
R是S编程语言的开源实现。作为“R核心团队”的一员,我也是其中的一员。我特别感兴趣的是用户界面和图形。特别是,在一项努力中,我正在努力改善R的内部结构和用户创建的源代码之间的联系:这将提高R的可用性,并将使程序员性能的研究成为可能。另一个正在进行的努力是通过rgl包将3D图形纳入R。
在之前的工作中,我和多伦多大学的同事已经展示了如何以计算效率高的方式评估数百万个基因测试的重要性。 目前,我正在与一个学生研究两个相关的概念:条件显著性的近似和多个测试组合的近似。 另一个学生和我正在考虑选择最经济但信息量最大的模型。
我工作的第三个重点是完美的模拟。马尔可夫链蒙特卡罗(英语:Markov chain Monte Carlo)是一种用于从任意分布(例如贝叶斯推断中的后验分布)进行采样的通用计算技术。直到1995年底,人们认为在几乎所有情况下,这将产生分布仅近似于目标分布的样本。Propp和Wilson(1996)表明,在某些情况下,可以获得精确的样本;我的工作和几年前与绿色的工作将其扩展到分布上。
连续和无界的状态空间。此外,Propp和Wilson的思想可以扩展到其他方面,如随机微分方程的随机扩散的完美模拟。另一个学生和我正在开发完美的模拟最大值,最小值,和障碍跨越时间的“随机扩散”,模型,这是常用的金融建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murdoch, DuncanJames其他文献
Murdoch, DuncanJames的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murdoch, DuncanJames', 18)}}的其他基金
Computer intensive statistical methods
计算机密集型统计方法
- 批准号:
137470-2008 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Exact sampling, orientation statistics, and other methods in applied statistics
应用统计学中的精确抽样、定向统计和其他方法
- 批准号:
137470-1999 - 财政年份:2000
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Exact sampling, orientation statistics, and other methods in applied statistics
应用统计学中的精确抽样、定向统计和其他方法
- 批准号:
137470-1999 - 财政年份:1999
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
- 批准号:
2347760 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
- 批准号:
1752614 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Computer intensive statistical methods
计算机密集型统计方法
- 批准号:
137470-2008 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Computer-Intensive Statistical Methods and their Applications in Econometrics
计算机密集型统计方法及其在计量经济学中的应用
- 批准号:
23243038 - 财政年份:2011
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Research on advancement of computer-intensive methods for statistical estimations along with Graphical Processing Units and development of application software
研究计算机密集型统计估计方法的进展以及图形处理单元和应用软件的开发
- 批准号:
23300108 - 财政年份:2011
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Computer intensive statistical methods
计算机密集型统计方法
- 批准号:
137470-2008 - 财政年份:2011
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Computer intensive statistical methods
计算机密集型统计方法
- 批准号:
137470-2008 - 财政年份:2010
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Computer intensive statistical methods
计算机密集型统计方法
- 批准号:
137470-2008 - 财政年份:2009
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Computer intensive statistical methods
计算机密集型统计方法
- 批准号:
137470-2008 - 财政年份:2008
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Theory and application of computer-intensive, nonparametric statistical methods
计算机密集型非参数统计方法的理论与应用
- 批准号:
DP0878503 - 财政年份:2008
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Projects