Algebraic Groups and Galois Geometries
代数群和伽罗瓦几何
基本信息
- 批准号:137522-2012
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I pursue research in two separate areas of mathematics.
Invariant theory is concerned with the study of symmetry. The collection of symmetries that an object possesses can be collected together into a mathematical object known as a group. Properties of the object can be deduced from the structure of its group of symmetries. One of the earliest sources of invariant theory was attempts to understand perspective. Invariant theory has many modern applications, including applications to computer vision, satellite and outer space navigation, fingerprint identificaton and materials sciences.
I also study Galois geometries. This is the study of geometry in spaces which contain only finitely many points. I am particularly concerned with caps. These are sets of points for which no three lie on the same line. Caps are equivalent to certain codes. These codes are used to encode information compactly and in a form which minimizes the errors in transmission. Indeed these compact forms provide a method for correcting any transmission errors that might occur. Invariant theory also has applications to coding theory.
我在两个不同的数学领域进行研究。
不变理论涉及对称性的研究。一个对象所具有的对称性集合可以被集中到一个称为群的数学对象中。物体的性质可以从其对称群的结构中推导出来。不变理论最早的来源之一是尝试理解透视。不变理论有许多现代应用,包括计算机视觉、卫星和外层空间导航、指纹识别和材料科学。
我还研究伽罗瓦几何。这是对仅包含有限多个点的空间中的几何的研究。我特别关心帽子。这些点的集合中没有三个点位于同一条线上。 Caps 相当于某些代码。这些代码用于以最小化传输错误的形式对信息进行紧凑编码。 事实上,这些紧凑的形式提供了一种纠正可能发生的任何传输错误的方法。不变理论也适用于编码理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wehlau, David其他文献
Wehlau, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wehlau, David', 18)}}的其他基金
Algebraic Groups and Graph Colouring
代数群和图形着色
- 批准号:
RGPIN-2017-05074 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Groups and Graph Colouring
代数群和图形着色
- 批准号:
RGPIN-2017-05074 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Groups and Graph Colouring
代数群和图形着色
- 批准号:
RGPIN-2017-05074 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Groups and Graph Colouring
代数群和图形着色
- 批准号:
RGPIN-2017-05074 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Groups and Graph Colouring
代数群和图形着色
- 批准号:
RGPIN-2017-05074 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Groups and Galois Geometries
代数群和伽罗瓦几何
- 批准号:
137522-2012 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Groups and Galois Geometries
代数群和伽罗瓦几何
- 批准号:
137522-2012 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Groups and Galois Geometries
代数群和伽罗瓦几何
- 批准号:
137522-2012 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Groups and Galois Geometries
代数群和伽罗瓦几何
- 批准号:
137522-2012 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic groups and galois geometries
代数群和伽罗瓦几何
- 批准号:
137522-2007 - 财政年份:2011
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Combinatorial Algebraic Geometry for Spectral Theory and Galois Groups
谱论和伽罗瓦群的组合代数几何
- 批准号:
2201005 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Algebraic Groups and Galois Geometries
代数群和伽罗瓦几何
- 批准号:
137522-2012 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Differential Galois theory and linear algebraic groups over algebraic function fields
代数函数域上的微分伽罗瓦理论和线性代数群
- 批准号:
279644768 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Research Grants
Algebraic Groups and Galois Geometries
代数群和伽罗瓦几何
- 批准号:
137522-2012 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Groups and Galois Geometries
代数群和伽罗瓦几何
- 批准号:
137522-2012 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Groups and Galois Geometries
代数群和伽罗瓦几何
- 批准号:
137522-2012 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Mild pro-p-Galois groups of algebraic number fields
代数数域的温和亲 p 伽罗瓦群
- 批准号:
231696112 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Research Fellowships
Algebraic and convex geometries, actions of reductive groups, topological galois theory
代数和凸几何、还原群的作用、拓扑伽罗瓦理论
- 批准号:
156833-2011 - 财政年份:2011
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic groups and galois geometries
代数群和伽罗瓦几何
- 批准号:
137522-2007 - 财政年份:2011
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic groups and galois geometries
代数群和伽罗瓦几何
- 批准号:
137522-2007 - 财政年份:2010
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual