Spectral Asymptotics and Dynamics
谱渐近学和动力学
基本信息
- 批准号:138277-2012
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I am going to finish the project, spanning over thirty years and which in its current form is "Sharp Spectral Asymptotics and their Applications to Mathematical Physics". To wrap it I plan
(1) To redo many of (mainly my own) old results, the goal - more general and more sharp results;
(2) To prove completely new results, which could not be proven before.
Achievement of these goals also relies upon a study of the corresponding dynamics (classical and "quantum").
Now are available
(a) superior microlocal analysis technique.
(b) superior variational estimates (especially in the critical and super-critical cases);
(c) better results in the theory of classical dynamical systems.
I also plan to revisit the problem of the asymptotics of the ground state energy for heavy molecules in the magnetic field, especially in the case when magnetic field is ultra-strong and the related problems of the excessive charge, and also consider the case when magnetic field is either self-generated or a sum of self-generated and external.
我将完成这个项目,时间跨度超过30年,目前的形式是“锐谱渐近论及其在数学物理中的应用”。为了包装它,我计划
(1)重做许多(主要是我自己的)旧结果,目标--更普遍、更尖锐的结果;
(2)证明以前无法证明的全新结果。
实现这些目标还有赖于对相应动力学(经典和“量子”)的研究。
现在都有货
(A)卓越的微局部分析技术。
(B)上级变分估计(特别是在临界和超临界情况下);
(C)经典动力系统理论的较好结果。
我还计划重温磁场中重分子基态能量的渐近性问题,特别是在磁场超强的情况下,以及相关的过度电荷问题,并考虑磁场是自生的或自生和外加的情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivrii, Victor其他文献
Ivrii, Victor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivrii, Victor', 18)}}的其他基金
Microlocal Analysis and Spectral and Scattering Asymptotics
微局域分析以及光谱和散射渐近
- 批准号:
RGPIN-2017-06254 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Microlocal Analysis and Spectral and Scattering Asymptotics
微局域分析以及光谱和散射渐近
- 批准号:
RGPIN-2017-06254 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Microlocal Analysis and Spectral and Scattering Asymptotics
微局域分析以及光谱和散射渐近
- 批准号:
RGPIN-2017-06254 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Microlocal Analysis and Spectral and Scattering Asymptotics
微局域分析以及光谱和散射渐近
- 批准号:
RGPIN-2017-06254 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Microlocal Analysis and Spectral and Scattering Asymptotics
微局域分析以及光谱和散射渐近
- 批准号:
RGPIN-2017-06254 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Spectral Asymptotics and Dynamics
谱渐近学和动力学
- 批准号:
138277-2012 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Spectral Asymptotics and Dynamics
谱渐近学和动力学
- 批准号:
138277-2012 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Spectral Asymptotics and Dynamics
谱渐近学和动力学
- 批准号:
138277-2012 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Spectral Asymptotics and Dynamics
谱渐近学和动力学
- 批准号:
138277-2012 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Rough microlocal analysis and spectral asymptotics
粗略微局域分析和谱渐近
- 批准号:
138277-2005 - 财政年份:2009
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Random Measures: Asymptotics, Bayesian Inference, and Stochastic Dynamics
随机测量:渐进、贝叶斯推理和随机动力学
- 批准号:
RGPIN-2016-05400 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Random Measures: Asymptotics, Bayesian Inference, and Stochastic Dynamics
随机测量:渐进、贝叶斯推理和随机动力学
- 批准号:
RGPIN-2016-05400 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Asymptotics in Probability: Walks and Graphs, Disordered Measures, and Dynamics
概率论渐进:游走和图、无序测度和动力学
- 批准号:
1954337 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Continuing Grant
Random Measures: Asymptotics, Bayesian Inference, and Stochastic Dynamics
随机测量:渐进、贝叶斯推理和随机动力学
- 批准号:
RGPIN-2016-05400 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Random Measures: Asymptotics, Bayesian Inference, and Stochastic Dynamics
随机测量:渐进、贝叶斯推理和随机动力学
- 批准号:
RGPIN-2016-05400 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Random Measures: Asymptotics, Bayesian Inference, and Stochastic Dynamics
随机测量:渐进、贝叶斯推理和随机动力学
- 批准号:
RGPIN-2016-05400 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Spectral Asymptotics and Dynamics
谱渐近学和动力学
- 批准号:
138277-2012 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Random Measures: Asymptotics, Bayesian Inference, and Stochastic Dynamics
随机测量:渐进、贝叶斯推理和随机动力学
- 批准号:
RGPIN-2016-05400 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Dynamics, singularities and asymptotics of higher order PDEs
高阶偏微分方程的动力学、奇异性和渐进性
- 批准号:
1516753 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
The Poisson-Dirichlet distribution: stochastic dynamics, quasi-invariant, and asymptotics
泊松-狄利克雷分布:随机动力学、准不变性和渐近性
- 批准号:
155745-2011 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual