"Online algorithms, paging and multicore architectures (CMP)"
“在线算法、分页和多核架构 (CMP)”
基本信息
- 批准号:217254-2012
- 负责人:
- 金额:$ 3.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Online algorithms and analysis is the study of computational problems in which final, irrevocable decisions must be made under incomplete or partial information. Its applications range from memory management and scheduling, to exploration of a disaster area, to planning the location of service centers in a growing city.
Numerous failed attempts to model and predict the desired characteristics of a "good" online algorithm in practice have been made; however this goal has yet to be fully realized. We believe that this research is now near fruition. Indeed, recently we introduced a model for paging algorithms which answered a long standing question on the observed superiority of the Least Recently Used (LRU) heuristic. We will study in particular better measures for the performance of paging, list update, bin packing and buffered packet routing.
A second objective of this research is to study paging and caching algorithms for multicore architectures. We have shown thus far that this problem is NP-complete for the offline version; that the main challenge is in the assignment of cache sizes; and that issues of fairness of execution are crucial to performance. We will propose novel practical algorithms for paging in chip multiprocessors with matching theoretical guarantees.
Equally important, we are developing a theoretical model for modern multicore architectures that includes issues of synchronization, interprocessor communication, paging, and ease of programming and analysis. The established model of serial computation (RAM) is an excellent tradeoff of the parameters above, and suitable extensions have been developed for I/O bound models. In contrast, for parallel computations no single model has stood out, with the PRAM and/or the BSP model of Valiant being the leading candidates for a replacement. We will study an update of the PRAM model but with a bounded number of processors. Thus we benefit from previous PRAM work while avoiding its more vexing characteristics. This research aims to introduce a new multicore model which is both amenable to study and accurately reflects the physical hardware, which is a key step for the development of the next generation of efficient algorithms.
在线算法和分析是对计算问题的研究,在这些问题中,必须在不完全或部分信息的情况下做出最终的、不可撤销的决定。它的应用范围从内存管理和调度,到灾区探索,再到在不断发展的城市中规划服务中心的位置。
在实践中,已经进行了多次失败的尝试,以模拟和预测“好的”在线算法的所需特征;然而,这一目标尚未完全实现。我们相信,这项研究现已接近成果。事实上,最近我们引入了一个寻呼算法模型,它回答了一个长期存在的问题,即观察到的最近最少使用(LRU)启发式算法的优越性。我们将特别研究更好的寻呼、列表更新、装箱和缓冲数据包路由性能措施。
这项研究的第二个目标是研究多核体系结构的分页和缓存算法。到目前为止,我们已经表明,对于离线版本,这个问题是NP-完全的;主要的挑战是分配高速缓存大小;执行的公平性问题对性能至关重要。在匹配的理论保证下,我们将提出新的实用的芯片多处理器分页算法。
同样重要的是,我们正在为现代多核体系结构开发一个理论模型,其中包括同步、处理器间通信、分页以及编程和分析的简易性等问题。建立的串行计算(RAM)模型很好地权衡了上述参数,并为I/O界限模型开发了适当的扩展。相比之下,在并行计算方面,没有一个单一的模型脱颖而出,PRAM和/或Valiant的BSP模型是替代模型的主要候选者。我们将研究PRAM模型的更新,但处理器数量有限。因此,我们从以前的PRAM工作中受益,同时避免了它更令人烦恼的特点。本研究旨在提出一种既易于研究又能准确反映物理硬件的新的多核模型,这是开发下一代高效算法的关键一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LopezOrtiz, Alejandro其他文献
LopezOrtiz, Alejandro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LopezOrtiz, Alejandro', 18)}}的其他基金
"Online algorithms, paging and multicore architectures (CMP)"
“在线算法、分页和多核架构 (CMP)”
- 批准号:
217254-2012 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
"Online algorithms, paging and multicore architectures (CMP)"
“在线算法、分页和多核架构 (CMP)”
- 批准号:
217254-2012 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
"Online algorithms, paging and multicore architectures (CMP)"
“在线算法、分页和多核架构 (CMP)”
- 批准号:
217254-2012 - 财政年份:2013
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
"Online algorithms, paging and multicore architectures (CMP)"
“在线算法、分页和多核架构 (CMP)”
- 批准号:
217254-2012 - 财政年份:2012
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms for massive data sets for networks, information retrieval and scheduling
用于网络、信息检索和调度的海量数据集的高效算法
- 批准号:
217254-2007 - 财政年份:2011
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Theoretical models for parallel computation in CMP and GPU architectures: algorithm analysis & design, cache efficiency and performance prediction
CMP 和 GPU 架构中并行计算的理论模型:算法分析
- 批准号:
411866-2010 - 财政年份:2010
- 资助金额:
$ 3.06万 - 项目类别:
Engage Grants Program
Efficient algorithms for massive data sets for networks, information retrieval and scheduling
用于网络、信息检索和调度的海量数据集的高效算法
- 批准号:
217254-2007 - 财政年份:2010
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms for massive data sets for networks, information retrieval and scheduling
用于网络、信息检索和调度的海量数据集的高效算法
- 批准号:
217254-2007 - 财政年份:2009
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Optimal data structures for organization and retrieval of spatial data
用于组织和检索空间数据的最佳数据结构
- 批准号:
350623-2007 - 财政年份:2009
- 资助金额:
$ 3.06万 - 项目类别:
Strategic Projects - Group
Efficient algorithms for massive data sets for networks, information retrieval and scheduling
用于网络、信息检索和调度的海量数据集的高效算法
- 批准号:
217254-2007 - 财政年份:2008
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
- 批准号:60973026
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 3.06万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 3.06万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 3.06万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 3.06万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 3.06万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 3.06万 - 项目类别:
Continuing Grant