Nonparametric and Tree Based Methods

非参数和基于树的方法

基本信息

  • 批准号:
    227087-2009
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The research program of this proposal is divided into two parts: 1) Nonparametric methods for clustered/multilevel data and for one-sided alternatives, 2) Tree and ensemble based methods for survival, clustered and multivariate data. Situations involving clustered and multilevel data are often encountered in practice and some typical examples of clusters are schools, families, strata (in survey samples) and, repeated measurements on a subject. It is well-known that ignoring the intra-cluster correlation leads to erroneous inference (usually the tests and confidence intervals are too liberal). The main long term objective of the first part of the research program is to develop extensions of nonparametric methods, mostly rank and sign based methods, for multivariate multilevel data and for one-sided and ordered alternatives. The objective of the second part of the research program is to develop tree based methods for new problems. Tree based methods have been successfully applied to many problems and are tools that can be easily understood by non-statisticians. The recent development of ensemble methods, like Bagging, Boosting and Random Forests, has renewed the interest towards these methods. Tree based methods have mainly been developed to handle a univariate categorical outcome, a continuous outcome or a censored continuous outcome (survival trees). However, the literature is sparse for other situations. In the next few years, the goal will be to develop methods for an interval-censored outcome (measured on a continuous or a discrete scale), for a clustered right-censored outcome and for clustered univariate and multivariate outcomes (continuous, categorical and a mix of both).
该方案的研究计划分为两个部分:1)聚类/多级数据和单侧选择的非参数方法,2)基于树和集成的生存,聚类和多变量数据的方法。 在实践中经常遇到涉及聚类和多层次数据的情况,聚类的一些典型例子是学校、家庭、阶层(在调查样本中)和对一个主题的重复测量。众所周知,忽略簇内相关性会导致错误的推断(通常测试和置信区间过于宽松)。 研究计划的第一部分的主要长期目标是开发非参数方法的扩展,主要是基于秩和符号的方法,用于多变量多水平数据和单侧和有序的替代品。 研究计划的第二部分的目标是为新问题开发基于树的方法。基于树的方法已经成功地应用于许多问题,并且是非统计学家可以容易理解的工具。最近发展的集成方法,如Bagging,Boosting和随机森林,重新对这些方法的兴趣。基于树的方法主要用于处理单变量分类结果、连续结果或截尾连续结果(生存树)。然而,其他情况下的文献很少。在接下来的几年里,目标将是开发用于区间删失结果(在连续或离散尺度上测量)、用于集群右删失结果以及用于集群单变量和多变量结果(连续、分类和两者的混合)的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Larocque, Denis其他文献

A weighted multivariate sign test for cluster-correlated data
  • DOI:
    10.1093/biomet/asm026
  • 发表时间:
    2007-06-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Larocque, Denis;Nevalainen, Jaakko;Oja, Hannu
  • 通讯作者:
    Oja, Hannu
Multivariate trees for mixed outcomes
  • DOI:
    10.1016/j.csda.2009.04.003
  • 发表时间:
    2009-09-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Dine, Abdessamad;Larocque, Denis;Bellavance, Francois
  • 通讯作者:
    Bellavance, Francois
IG-RL: Inductive Graph Reinforcement Learning for Massive-Scale Traffic Signal Control
The early explanatory power of NDVI in crop yield modelling
  • DOI:
    10.1080/01431160701395252
  • 发表时间:
    2008-01-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Wall, Lenny;Larocque, Denis;Leger, Pierre-Majorique
  • 通讯作者:
    Leger, Pierre-Majorique
Random forests for homogeneous and non-homogeneous Poisson processes with excess zeros
  • DOI:
    10.1177/0962280219888741
  • 发表时间:
    2019-11-24
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Mathlouthi, Walid;Larocque, Denis;Fredette, Marc
  • 通讯作者:
    Fredette, Marc

Larocque, Denis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Larocque, Denis', 18)}}的其他基金

Random forests, nonparametric and screening methods
随机森林、非参数和筛选方法
  • 批准号:
    RGPIN-2016-05702
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Random forests, nonparametric and screening methods
随机森林、非参数和筛选方法
  • 批准号:
    RGPIN-2016-05702
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Random forests, nonparametric and screening methods
随机森林、非参数和筛选方法
  • 批准号:
    RGPIN-2016-05702
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Random forests, nonparametric and screening methods
随机森林、非参数和筛选方法
  • 批准号:
    RGPIN-2016-05702
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Random forests, nonparametric and screening methods
随机森林、非参数和筛选方法
  • 批准号:
    RGPIN-2016-05702
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric and Tree Based Methods
非参数和基于树的方法
  • 批准号:
    227087-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric and Tree Based Methods
非参数和基于树的方法
  • 批准号:
    227087-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric and Tree Based Methods
非参数和基于树的方法
  • 批准号:
    227087-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric and Tree Based Methods
非参数和基于树的方法
  • 批准号:
    227087-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Multivariate nonparametric methods and ensemble methods
多元非参数方法和集成方法
  • 批准号:
    227087-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

数据中心Fat-Tree批量调度光包交换新架构
  • 批准号:
    61372085
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
基于Junction tree推理的多运动平台分散式协同导航算法研究
  • 批准号:
    61203200
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

DeepGreen: A Deep Learning Based Tree-Ring Width Data Model for Paleoclimatic Data Assimilation
DeepGreen:基于深度学习的树木年轮宽度数据模型,用于古气候数据同化
  • 批准号:
    2303530
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Establishment of a new evaluation method for urban tree function based on the relationship between carbon stable isotope ratios and aquaporins
基于碳稳定同位素比值与水通道蛋白关系的城市树木功能评价新方法的建立
  • 批准号:
    23H03552
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Feasibility study for development of an accessible UAV-based Tree Health Management Platform: Ash Dieback
开发基于无人机的无障碍树木健康管理平台的可行性研究:Ash Dieback
  • 批准号:
    10054228
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
Development of tree and log strength estimation model: Optimizing wood distribution based on strength information
树木和原木强度估计模型的开发:根据强度信息优化木材分布
  • 批准号:
    23K05470
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enzyme-based materials for sustainable tree shelters
用于可持续树木庇护所的酶基材料
  • 批准号:
    2868552
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
Development of climate-sensitive tree growth models based on population transfer functions
基于种群转移函数的气候敏感树木生长模型的开发
  • 批准号:
    559879-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: P2C2--Extending Tree-Ring Based Reconstructions of Atlantic Gulf Basin Hydroclimate over the Common Era Using Old-Growth Sinker Wood
合作研究:P2C2——使用古老的沉降木扩展大西洋湾盆地水文气候的树轮重建
  • 批准号:
    2202857
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Advancing Theory and Methodology for Tree-Based Algorithms in High Dimensions
推进高维树基算法的理论和方法
  • 批准号:
    2209975
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Biochar-based tree seed coatings for climate-smart forest restoration
用于气候智能型森林恢复的生物炭基树木种子涂层
  • 批准号:
    567037-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
I-Corps: Tree-based artificial intelligence (AI) models for financial fraud detection
I-Corps:用于金融欺诈检测的基于树的人工智能 (AI) 模型
  • 批准号:
    2228243
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了