Computations in finite fields and probabilistic analysis of algorithms

有限域计算和算法的概率分析

基本信息

  • 批准号:
    238757-2013
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The overall area of my research is the design and analysis of algorithms. My recent research has centered around two lines: the investigation of algorithms in finite fields and their applications in modern communication areas, and the study of algorithms when randomness is considered. A main area of my research involves computations in finite fields and their applications. Algorithms that work with finite fields play a crucial role in innumerous practical applications in communications, cryptography, coding theory and information theory. My goal in this area is the design of efficient algorithms in finite fields, and the usage of elements from the theory of finite fields in engineering applications. Examples are efficient implementation of arithmetic using polynomials and normal elements, and constructions of certain types of polynomials over finite fields (irreducible, primitive, among others). The main applications of these studies are in cryptography, with other areas including codes and combinatorial constructions. My second line of research is the probabilistic analysis of algorithms that comprises the study of algorithms when randomness is used. In particular, average-case analysis of algorithms focuses on understanding the behaviour of algorithms on random inputs. An essential goal of the area is to advance in the understanding of randomness. Immediate goals are better understanding of particular algorithms, and the development of new efficient algorithms based on this knowledge. The scientific approach is based on mathematical proofs involving generating functions for counting the properties of interest for the analysis of the algorithms, and asymptotic analysis. My goal in this area is two-fold: to develop algorithms for fundamental problems like searching with better performance than previously known algorithms, and to contribute to the mathematical understanding of random polynomials over finite fields.
我研究的总体领域是算法的设计和分析。我最近的研究集中在两条线上:有限域的算法研究及其在现代通信领域的应用,以及考虑随机性时的算法研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panario, Daniel其他文献

Soil Organic Carbon vs. Bulk Density Following Temperate Grassland Afforestation
QC-LDPC Codes With Large Column Weight and Free of Small Size ETSs
  • DOI:
    10.1109/lcomm.2021.3138936
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amirzade, Farzane;Sadeghi, Mohammad-Reza;Panario, Daniel
  • 通讯作者:
    Panario, Daniel

Panario, Daniel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Panario, Daniel', 18)}}的其他基金

Mappings and Sequences over Finite Fields
有限域上的映射和序列
  • 批准号:
    RGPIN-2018-05328
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Mappings and Sequences over Finite Fields
有限域上的映射和序列
  • 批准号:
    RGPIN-2018-05328
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Mappings and Sequences over Finite Fields
有限域上的映射和序列
  • 批准号:
    RGPIN-2018-05328
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Mappings and Sequences over Finite Fields
有限域上的映射和序列
  • 批准号:
    RGPIN-2018-05328
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Mappings and Sequences over Finite Fields
有限域上的映射和序列
  • 批准号:
    RGPIN-2018-05328
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Computations in finite fields and probabilistic analysis of algorithms
有限域计算和算法的概率分析
  • 批准号:
    238757-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Computations in finite fields and probabilistic analysis of algorithms
有限域计算和算法的概率分析
  • 批准号:
    238757-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Computations in finite fields and probabilistic analysis of algorithms
有限域计算和算法的概率分析
  • 批准号:
    238757-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical analysis of algorithms, and computations in finite fields
算法的数学分析和有限域中的计算
  • 批准号:
    238757-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical analysis of algorithms, and computations in finite fields
算法的数学分析和有限域中的计算
  • 批准号:
    238757-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Whitham调制理论在色散方程间断初值问题中的应用
  • 批准号:
    12001556
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Explicit computations of weight one modular forms including the cases over finite fields and their applications
权一模形式的显式计算,包括有限域上的情况及其应用
  • 批准号:
    18K13394
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Computations in finite fields and probabilistic analysis of algorithms
有限域计算和算法的概率分析
  • 批准号:
    238757-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Computations in finite fields and probabilistic analysis of algorithms
有限域计算和算法的概率分析
  • 批准号:
    238757-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Randomized matrix computations over finite fields
有限域上的随机矩阵计算
  • 批准号:
    89756-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Computations in finite fields and probabilistic analysis of algorithms
有限域计算和算法的概率分析
  • 批准号:
    238757-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical analysis of algorithms, and computations in finite fields
算法的数学分析和有限域中的计算
  • 批准号:
    238757-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical analysis of algorithms, and computations in finite fields
算法的数学分析和有限域中的计算
  • 批准号:
    238757-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Randomized matrix computations over finite fields
有限域上的随机矩阵计算
  • 批准号:
    89756-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Randomized matrix computations over finite fields
有限域上的随机矩阵计算
  • 批准号:
    89756-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical analysis of algorithms, and computations in finite fields
算法的数学分析和有限域中的计算
  • 批准号:
    238757-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了