Mining Interesting Useful Patterns
挖掘有趣有用的模式
基本信息
- 批准号:298317-2012
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Frequent pattern mining is an important data mining task that finds sets of frequently co-occurring items. Many existing algorithms find frequent patterns from precise data (e.g., supermarket transactions), in which the contents of datasets are precisely known. However, there are real-life situations in which data are imprecise or uncertain (e.g., sensor data, medical test results) due to factors like inherited measurement inaccuracies or sampling frequency. Despite their uncertainty, these data contain a rich set of useful knowledge. Over the past few years, I have developed algorithms that use probabilistic approaches to find frequent patterns from uncertain data, in which items in each transaction are assumed to be independent. However, this assumption may not hold in many real-life situations. Hence, I propose a research program with an objective to build an exploratory, efficient, user-friendly, and powerful mining framework--which consists of systems that mine useful patterns that are interesting to users from data streams and/or uncertain data. Specifically, I plan to
(i) explore non-probabilistic approaches in finding frequent patterns, (ii) relax the above assumption so as to handle more realistic situations where items in each uncertain transaction may be related, (iii) incorporate user preferences in the mining process so as to allow users to find other useful (frequent or infrequent) patterns that are interesting to users, (iv) further improve performance so as to provide users with real-time responses,
(v) develop visual analytics tools so as to enable users to visualize and analyze static (or dynamic) datasets of precise (or uncertain) data. Consequently, for this proposed research program, I and my HQP would develop new data mining technology for mining interesting useful patterns. This, in turn, advances knowledge of researchers in the field. Moreover, I also plan to apply the proposed system to various real-life applications (e.g., mining Web data, telecommunication data, agro-meteorological data, and tweets from social networks) so as to demonstrate the effectiveness of the proposed systems in addressing scientific/business needs of the application users when mining interesting useful patterns.
频繁模式挖掘是发现频繁共现项集的重要数据挖掘任务。许多现有的算法从精确的数据(如超市交易)中发现频繁模式,其中数据集的内容是精确已知的。然而,在现实生活中,由于遗传测量不准确或采样频率等因素,数据不精确或不确定(例如,传感器数据、医学测试结果)。尽管存在不确定性,但这些数据包含了丰富的有用知识。在过去的几年里,我开发了一些算法,使用概率方法从不确定的数据中找到频繁模式,其中每个交易中的项目都被假设为独立的。然而,这一假设在许多现实生活中可能并不成立。因此,我提出了一个研究计划,目标是构建一个探索性的、高效的、用户友好的和强大的挖掘框架--它由从数据流和/或不确定数据中挖掘用户感兴趣的有用模式的系统组成。具体来说,我计划
(I)探索发现频繁模式的非概率方法,(Ii)放松上述假设,以便处理每个不确定事务中的项可能相关的更现实情况,(Iii)将用户偏好合并到挖掘过程中,以便允许用户找到用户感兴趣的其他有用的(频繁或不频繁的)模式,(Iv)进一步提高性能,以便为用户提供实时响应,
(5)开发可视化分析工具,使用户能够对精确(或不确定)数据的静态(或动态)数据集进行可视化和分析。因此,对于这个拟议的研究计划,我和我的HQP将开发新的数据挖掘技术,以挖掘有趣的有用模式。这反过来又促进了该领域研究人员的知识。此外,我还计划将建议的系统应用于各种现实生活中的应用程序(例如,挖掘Web数据、电信数据、农业气象数据和来自社交网络的推文),以展示建议的系统在挖掘有趣的有用模式时满足应用程序用户的科学/商业需求的有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leung, CarsonKaiSang其他文献
Leung, CarsonKaiSang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leung, CarsonKaiSang', 18)}}的其他基金
Mining interesting patterns from big data
从大数据中挖掘有趣的模式
- 批准号:
RGPIN-2017-06206 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Mining interesting patterns from big data
从大数据中挖掘有趣的模式
- 批准号:
RGPIN-2017-06206 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Mining interesting patterns from big data
从大数据中挖掘有趣的模式
- 批准号:
RGPIN-2017-06206 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Advanced predictive analytics for employee turnover
员工流动率的高级预测分析
- 批准号:
544453-2019 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Engage Plus Grants Program
Mining interesting patterns from big data
从大数据中挖掘有趣的模式
- 批准号:
RGPIN-2017-06206 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Predictive analytics of driver turnover
驾驶员流动率预测分析
- 批准号:
532022-2018 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Engage Grants Program
Mining interesting patterns from big data
从大数据中挖掘有趣的模式
- 批准号:
RGPIN-2017-06206 - 财政年份:2017
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Mining Interesting Useful Patterns
挖掘有趣有用的模式
- 批准号:
298317-2012 - 财政年份:2016
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Mining Interesting Useful Patterns
挖掘有趣有用的模式
- 批准号:
298317-2012 - 财政年份:2014
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Mining Interesting Useful Patterns
挖掘有趣有用的模式
- 批准号:
298317-2012 - 财政年份:2013
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Organic Synthesis of Biologically Interesting Compounds and Organosulfur/Selenium Chemistry
生物感兴趣的化合物的有机合成和有机硫/硒化学
- 批准号:
RGPIN-2019-04373 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Leveraging Patterns and Interesting Anomalies through Scalable Semantic Analysis
通过可扩展的语义分析利用模式和有趣的异常
- 批准号:
RGPIN-2018-03749 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Leveraging Patterns and Interesting Anomalies through Scalable Semantic Analysis
通过可扩展的语义分析利用模式和有趣的异常
- 批准号:
RGPIN-2018-03749 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Organic Synthesis of Biologically Interesting Compounds and Organosulfur/Selenium Chemistry
生物感兴趣的化合物的有机合成和有机硫/硒化学
- 批准号:
RGPIN-2019-04373 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Mining interesting patterns from big data
从大数据中挖掘有趣的模式
- 批准号:
RGPIN-2017-06206 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Developing NMR and Biophysical Strategies to Study Protein-Ligand Interactions and Reveal Interesting Compound Properties
开发核磁共振和生物物理策略来研究蛋白质-配体相互作用并揭示有趣的化合物特性
- 批准号:
RGPIN-2016-06747 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Mining interesting patterns from big data
从大数据中挖掘有趣的模式
- 批准号:
RGPIN-2017-06206 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Leveraging Patterns and Interesting Anomalies through Scalable Semantic Analysis
通过可扩展的语义分析利用模式和有趣的异常
- 批准号:
RGPIN-2018-03749 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Organic Synthesis of Biologically Interesting Compounds and Organosulfur/Selenium Chemistry
生物感兴趣的化合物的有机合成和有机硫/硒化学
- 批准号:
RGPIN-2019-04373 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Developing NMR and Biophysical Strategies to Study Protein-Ligand Interactions and Reveal Interesting Compound Properties
开发核磁共振和生物物理策略来研究蛋白质-配体相互作用并揭示有趣的化合物特性
- 批准号:
RGPIN-2016-06747 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual