Modeling Trust in Open, Dynamic Multi-agent Systems and Developing Framework for Predicting Consumer-generated Reviews' Helpfulness

对开放、动态多代理系统中的信任进行建模并开发用于预测消费者生成评论的有用性的框架

基本信息

  • 批准号:
    311810-2013
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The goal of this proposed research program is twofold: (a) to construct an effective trust model for open, dynamic multi-agent systems, and (b) to develop a framework for modeling the helpfulness of online reviews. Modeling trust is of vital importance to open multi-agent systems where agents need to find trustworthy partners to help fulfill their tasks while deceptive agents may exist in the environment. We plan to build a trust model that works effectively not only when agents can gather sufficient evidence to evaluate the trustworthiness of others, but also when trust evidence is unavailable (e.g., in highly dynamic systems with new agents continually joining and leaving). Our approach is to compute an agent's trust as an accurate function of direct and indirect evidence, and to make use of incentive mechanisms and machine learning to promote honesty and learn the similarities and dissimilarities between new and existing agents. We expect to achieve a trust model that is valuable to many important application domains such as electronic marketplaces, social networks, vehicular ad-hoc networks, cloud computing environments, and peer-to-peer systems, etc. Online product reviews have become a major source of information to help consumers make good purchase decisions. However, due to the vast number of available reviews and their great difference in the level of helpfulness, consumers really need systems that can discover and recommend the most helpful reviews to them. We would like to develop a rigorous framework for inferring the helpfulness of reviews, which uses a probabilistic approach to formulate helpfulness inference as an optimization problem. We will use our preliminary model for helpfulness prediction as a starting point, but will extend it considerably to obtain a more complex model with significantly increased performance and improved accuracy. This framework is expected to be useful for several applications: Search engines, e-commerce websites, online communities and recommender systems can utilize this framework to offer the most helpful reviews, suitable products, services and/or vendors to their users.
这个建议的研究计划的目标是双重的:(a)构建一个有效的信任模型,开放的,动态的多代理系统,和(B)开发一个框架建模的有用的在线评论。 信任建模对于开放的多Agent系统至关重要,在开放的多Agent系统中,Agent需要找到可信任的伙伴来帮助完成任务,而环境中可能存在欺骗性Agent。我们计划建立一个信任模型,该模型不仅在代理可以收集足够的证据来评估他人的可信度时有效,而且在信任证据不可用时也有效(例如,在新代理不断加入和离开的高度动态系统中)。我们的方法是计算代理的信任作为直接和间接证据的准确函数,并利用激励机制和机器学习来促进诚实和学习新的和现有的代理之间的相似性和差异。我们期望能够得到一个对电子市场、社交网络、车载自组织网络、云计算环境和对等系统等重要应用领域都有价值的信任模型。 在线产品评论已成为帮助消费者做出良好购买决策的主要信息来源。然而,由于大量的可用评论以及它们在有用程度上的巨大差异,消费者确实需要能够发现并向他们推荐最有用评论的系统。我们想开发一个严格的框架来推断评论的有用性,它使用概率方法来制定有用性推断作为一个优化问题。我们将使用我们的帮助预测初步模型作为起点,但将大大扩展它,以获得一个更复杂的模型,显着提高性能和准确性。这个框架预计将是有用的几个应用程序:搜索引擎,电子商务网站,在线社区和推荐系统可以利用这个框架提供最有帮助的评论,合适的产品,服务和/或供应商给他们的用户。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tran, Thomas其他文献

SARS-CoV-2 breakthrough infection induces rapid memory and de novo T cell responses.
  • DOI:
    10.1016/j.immuni.2023.02.017
  • 发表时间:
    2023-04-11
  • 期刊:
  • 影响因子:
    32.4
  • 作者:
    Koutsakos, Marios;Reynaldi, Arnold;Lee, Wen Shi;Nguyen, Julie;Amarasena, Thakshila;Taiaroa, George;Kinsella, Paul;Liew, Kwee Chin;Tran, Thomas;Kent, Helen E.;Tan, Hyon-Xhi;Rowntree, Louise C.;Nguyen, Thi H. O.;Thomas, Paul G.;Kedzierska, Katherine;Petersen, Jan;Rossjohn, Jamie;Williamson, Deborah A.;Khoury, David;Davenport, Miles P.;Kent, Stephen J.;Wheatley, Adam K.;Juno, Jennifer A.
  • 通讯作者:
    Juno, Jennifer A.
A Machine Learning Approach for Identifying Disease-Treatment Relations in Short Texts
Machine Learning Enabled Image Analysis of Time-Temperature Sensing Colloidal Arrays.
  • DOI:
    10.1002/advs.202205512
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Schoettle, Marius;Tran, Thomas;Oberhofer, Harald;Retsch, Markus
  • 通讯作者:
    Retsch, Markus
Bacterial chemoreceptor signaling complexes control kinase activity by stabilizing the catalytic domain of CheA.
Laboratory assessment of a multi-target assay for the rapid detection of viruses causing vesicular diseases.
  • DOI:
    10.1016/j.jcv.2023.105525
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Batty, Mitchell;Papadakis, Georgina;Zhang, Changxu;Tran, Thomas;Druce, Julian;Lim, Chuan Kok;Williamson, Deborah A.;Jackson, Kathy
  • 通讯作者:
    Jackson, Kathy

Tran, Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tran, Thomas', 18)}}的其他基金

Establishing Trust in Multi-agent Systems and Developing an Adaptive Framework for Personalized, Persuasive Recommender Systems
建立多代理系统的信任并为个性化、有说服力的推荐系统开发自适应框架
  • 批准号:
    RGPIN-2020-04036
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Establishing Trust in Multi-agent Systems and Developing an Adaptive Framework for Personalized, Persuasive Recommender Systems
建立多代理系统的信任并为个性化、有说服力的推荐系统开发自适应框架
  • 批准号:
    RGPIN-2020-04036
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Establishing Trust in Multi-agent Systems and Developing an Adaptive Framework for Personalized, Persuasive Recommender Systems
建立多代理系统的信任并为个性化、有说服力的推荐系统开发自适应框架
  • 批准号:
    RGPIN-2020-04036
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling Trust in Open, Dynamic Multi-agent Systems and Developing Framework for Predicting Consumer-generated Reviews' Helpfulness
对开放、动态多代理系统中的信任进行建模并开发用于预测消费者生成评论的有用性的框架
  • 批准号:
    311810-2013
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling Trust in Open, Dynamic Multi-agent Systems and Developing Framework for Predicting Consumer-generated Reviews' Helpfulness
对开放、动态多代理系统中的信任进行建模并开发用于预测消费者生成评论的有用性的框架
  • 批准号:
    311810-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling Trust in Open, Dynamic Multi-agent Systems and Developing Framework for Predicting Consumer-generated Reviews' Helpfulness
对开放、动态多代理系统中的信任进行建模并开发用于预测消费者生成评论的有用性的框架
  • 批准号:
    311810-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling Trust in Open, Dynamic Multi-agent Systems and Developing Framework for Predicting Consumer-generated Reviews' Helpfulness
对开放、动态多代理系统中的信任进行建模并开发用于预测消费者生成评论的有用性的框架
  • 批准号:
    311810-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Developing intelligent information systems to enhance E-Commerce
开发智能信息系统以增强电子商务
  • 批准号:
    311810-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Developing intelligent information systems to enhance E-Commerce
开发智能信息系统以增强电子商务
  • 批准号:
    311810-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Developing intelligent information systems to enhance E-Commerce
开发智能信息系统以增强电子商务
  • 批准号:
    311810-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Open Access Block Award 2024 - Bradford Teaching Hosp NHS Found Trust
2024 年开放访问区块奖 - 布拉德福德教学医院 NHS 赢得信任
  • 批准号:
    EP/Z53139X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Kings College Hospital NHS Foundation Trust
2024 年开放访问区块奖 - 国王学院医院 NHS 基金会信托
  • 批准号:
    EP/Z532940/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Wellcome Trust Sanger Institute
2024 年开放访问区块奖 - Wellcome Trust Sanger Institute
  • 批准号:
    EP/Z532253/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
Open Access Block Award 2023 - Guy's & St Thomas' NHS Foundation Trust
2023 年开放访问区块奖 - Guys
  • 批准号:
    EP/Y52976X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
Open Access Block Award 2023 - Moorfields Eye Hosp NHS Foundation Trust
2023 年开放访问区块奖 - Moorfields Eye Hosp NHS Foundation Trust
  • 批准号:
    EP/Y530281/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
Open Access Block Award 2023 - Wellcome Trust Sanger Institute
2023 年开放访问区块奖 - Wellcome Trust Sanger Institute
  • 批准号:
    EP/Y530001/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
Open Access Block Award 2023 - Bradford Teaching Hosp NHS Found Trust
2023 年开放访问区块奖 - 布拉德福德教学医院 NHS 赢得信任
  • 批准号:
    EP/Y529011/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
Open Access Block Award 2022 - Bradford Teaching Hosp NHS Found Trust
2022 年开放访问区块奖 - 布拉德福德教学医院 NHS 赢得信任
  • 批准号:
    EP/X525984/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
Open Access Block Award 2022 - Guy's & St Thomas' NHS Foundation Trust
2022 年开放访问区块奖 - Guys
  • 批准号:
    EP/X526836/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
Open Access Block Award 2022 - Moorfields Eye Hosp NHS Foundation Trust
2022 年开放访问区块奖 - Moorfields Eye Hosp NHS Foundation Trust
  • 批准号:
    EP/X52718X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了