Fast entity desambiguation in large-scale databases
大规模数据库中的快速实体消歧
基本信息
- 批准号:445821-2012
- 负责人:
- 金额:$ 5.08万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Evaluating the work of a researcher, the impact of an academic institution, or the effectiveness of a research policy requires the analysis of the corresponding output in terms of scientific publications. The global scientific production represents a huge amount of information which can be accessed through several databases, but the presence of ambiguous information and the large size of the databases make it difficult to extract accurate results in a reasonable lapse of time. So far, an important part of the processing, known as disambiguation, must still be performed manually in order to achieve satisfactory results. In the past few months, a preliminary investigation of the properties of a new approach to automatic entity disambiguation was carried out within the framework of a NSERC ENGAGE project, in collaboration with industrial partner Science-Metrix. This new approach is based on a technique used in image processing for face detection in image sequences. One of its salient characteristic is the use of a cascaded classification algorithm in which the choice and ordering of classification features are critical to the derivation of a fast and accurate algorithm.
Since the preliminary study produced very promising results, the general goal of the present project is to develop and test a full-fledged cascaded disambiguation method capable of processing real-size bibliographic databases with better accuracy and recall rates than existing commercial or publicly available techniques. In order to reach this goal, all major components of the method, i.e., preprocessing of the data, training approach, classification methodology, usability and computational efficiency, will be revisited and improved in close collaboration with Science-Metrix. The resulting method will give Science-Metrix a significant technical and commercial edge, which in turn will be beneficial to the economic and academic activities in the areas of entity disambiguation, large-scale data analysis and more generally high level information processing.
要评价一个研究人员的工作、一个学术机构的影响或一项研究政策的有效性,就需要对科学出版物的相应产出进行分析。全球科学成果代表了大量信息,可以通过几个数据库访问,但模糊信息的存在和数据库的庞大规模使得难以在合理的时间内提取准确的结果。到目前为止,处理的一个重要部分,称为消歧,仍然必须手动执行,以达到令人满意的结果。在过去的几个月里,在NSERC ENGAGE项目的框架内,与工业合作伙伴Science-Meetings合作,对自动实体消歧的新方法的属性进行了初步调查。这种新的方法是基于一种技术,用于在图像序列中的人脸检测的图像处理。它的一个显著特点是使用级联分类算法,其中分类特征的选择和排序对于快速准确算法的推导至关重要。
由于初步研究产生了非常有希望的结果,本项目的总体目标是开发和测试一个成熟的级联消歧方法,能够处理实际规模的书目数据库,具有更好的准确性和召回率比现有的商业或公开可用的技术。为了达到这一目标,该方法的所有主要组成部分,即,数据预处理、训练方法、分类方法、可用性和计算效率将与科学-气象中心密切合作,重新审视和改进。由此产生的方法将为Science-Meetings提供显著的技术和商业优势,这反过来又将有利于实体消歧,大规模数据分析和更普遍的高级信息处理领域的经济和学术活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Goussard, Yves其他文献
Contrast source inversion method applied to relatively high contrast objects
- DOI:
10.1088/0266-5611/27/7/075012 - 发表时间:
2011-07-01 - 期刊:
- 影响因子:2.1
- 作者:
Barriere, Paul-Andre;Idier, Jerome;Goussard, Yves - 通讯作者:
Goussard, Yves
GPU-accelerated regularized iterative reconstruction for few-view cone beam CT
- DOI:
10.1118/1.4914143 - 发表时间:
2015-04-01 - 期刊:
- 影响因子:3.8
- 作者:
Matenine, Dmitri;Goussard, Yves;Despres, Philippe - 通讯作者:
Despres, Philippe
Goussard, Yves的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Goussard, Yves', 18)}}的其他基金
Models and algorithms for three-dimensional computed tomography
三维计算机断层扫描模型和算法
- 批准号:
138417-2012 - 财政年份:2017
- 资助金额:
$ 5.08万 - 项目类别:
Discovery Grants Program - Individual
Models and algorithms for three-dimensional computed tomography
三维计算机断层扫描模型和算法
- 批准号:
138417-2012 - 财政年份:2015
- 资助金额:
$ 5.08万 - 项目类别:
Discovery Grants Program - Individual
Models and algorithms for three-dimensional computed tomography
三维计算机断层扫描模型和算法
- 批准号:
138417-2012 - 财政年份:2014
- 资助金额:
$ 5.08万 - 项目类别:
Discovery Grants Program - Individual
Fast entity desambiguation in large-scale databases
大规模数据库中的快速实体消歧
- 批准号:
445821-2012 - 财政年份:2014
- 资助金额:
$ 5.08万 - 项目类别:
Collaborative Research and Development Grants
Models and algorithms for three-dimensional computed tomography
三维计算机断层扫描模型和算法
- 批准号:
138417-2012 - 财政年份:2013
- 资助金额:
$ 5.08万 - 项目类别:
Discovery Grants Program - Individual
Fast entity desambiguation in large-scale databases
大规模数据库中的快速实体消歧
- 批准号:
445821-2012 - 财政年份:2013
- 资助金额:
$ 5.08万 - 项目类别:
Collaborative Research and Development Grants
Fast entity desambiguation in large-scale databases
大规模数据库中的快速实体消歧
- 批准号:
433987-2012 - 财政年份:2012
- 资助金额:
$ 5.08万 - 项目类别:
Engage Grants Program
Models and algorithms for three-dimensional computed tomography
三维计算机断层扫描模型和算法
- 批准号:
138417-2012 - 财政年份:2012
- 资助金额:
$ 5.08万 - 项目类别:
Discovery Grants Program - Individual
Improvement of reconstruction methods for three-dimensional computed tomography
三维计算机断层扫描重建方法的改进
- 批准号:
138417-2011 - 财政年份:2011
- 资助金额:
$ 5.08万 - 项目类别:
Discovery Grants Program - Individual
Inverse problems in 3D image processing and medical imaging
3D 图像处理和医学成像中的逆问题
- 批准号:
138417-2006 - 财政年份:2010
- 资助金额:
$ 5.08万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Emerging nanoscopy for single entity characterisation
用于单一实体表征的新兴纳米技术
- 批准号:
EP/X038017/1 - 财政年份:2023
- 资助金额:
$ 5.08万 - 项目类别:
Research Grant
Proto-OKN Theme 2: SPIDER: Scalable Public Infrastructure for Distributed Entity Relationships
Proto-OKN 主题 2:SPIDER:分布式实体关系的可扩展公共基础设施
- 批准号:
2333849 - 财政年份:2023
- 资助金额:
$ 5.08万 - 项目类别:
Cooperative Agreement
Elements: Entity: Radiative General-Relativistic Particle-in-cell Toolkit for Extreme Plasma Astrophysics
元素:实体:用于极端等离子体天体物理学的辐射广义相对论细胞内粒子工具包
- 批准号:
2311800 - 财政年份:2023
- 资助金额:
$ 5.08万 - 项目类别:
Standard Grant
Dynamic location equilibrium problem with the recursive structure of multi-entity in disaster prone areas
灾害易发区多实体递归结构动态位置均衡问题
- 批准号:
23KJ0771 - 财政年份:2023
- 资助金额:
$ 5.08万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Clinical Phase I trials on an IND single molecule dual inhibitor of Cav3 channels and soluble epoxide hydrolase for treatment of neuropathic pain
Cav3通道和可溶性环氧化物水解酶的单分子双重抑制剂治疗神经性疼痛的IND临床I期试验
- 批准号:
10760089 - 财政年份:2023
- 资助金额:
$ 5.08万 - 项目类别:
Assessing inhibitor efficacy in vivo and developing a biomarker for use during early phase clinical trials
评估抑制剂的体内功效并开发用于早期临床试验的生物标志物
- 批准号:
10747157 - 财政年份:2023
- 资助金额:
$ 5.08万 - 项目类别:
Developing a novel treatment of cocaine use disorder using an IND dual inhibitor of Cav3 channel and soluble epoxide hydrolase
使用 Cav3 通道和可溶性环氧化物水解酶的 IND 双重抑制剂开发可卡因使用障碍的新型治疗方法
- 批准号:
10786151 - 财政年份:2023
- 资助金额:
$ 5.08万 - 项目类别:
Development of a Practical Medical Terminology Dictionary toward Entity Linking
开发面向实体链接的实用医学术语词典
- 批准号:
23H03492 - 财政年份:2023
- 资助金额:
$ 5.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of First-in-Class PDE5/HAT Directed LigandsModulating Molecular Pathways involved in Synaptic Plasticity
开发一流的 PDE5/HAT 定向配体调节参与突触可塑性的分子途径
- 批准号:
10654103 - 财政年份:2023
- 资助金额:
$ 5.08万 - 项目类别:
Development of a Novel Calcium Channel Therapeutic for Opioid Use Disorder
开发一种治疗阿片类药物使用障碍的新型钙通道疗法
- 批准号:
10684558 - 财政年份:2023
- 资助金额:
$ 5.08万 - 项目类别:














{{item.name}}会员




