Singularity Theory, Matrix Factorizations and Representations of Algebras.

奇异性理论、矩阵分解和代数表示。

基本信息

  • 批准号:
    475655-2015
  • 负责人:
  • 金额:
    $ 2.55万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
无摘要- Aucun sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gelinas, Vincent其他文献

Gelinas, Vincent的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gelinas, Vincent', 18)}}的其他基金

Singularity Theory, Matrix Factorizations and Representations of Algebras.
奇异性理论、矩阵分解和代数表示。
  • 批准号:
    475655-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Topological Methods in Commutative Algebra
交换代数中的拓扑方法
  • 批准号:
    415373-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 2.55万
  • 项目类别:
    University Undergraduate Student Research Awards

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Universal approaches in random matrix theory
随机矩阵理论中的通用方法
  • 批准号:
    24K06766
  • 财政年份:
    2024
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
  • 批准号:
    2401227
  • 财政年份:
    2024
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
Random Matrix Theory: Free Probability Theory and beyond
随机矩阵理论:自由概率论及其他理论
  • 批准号:
    23K20800
  • 财政年份:
    2024
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
LEAPS-MPS: Some Applications of Free Probability and Random Matrix Theory
LEAPS-MPS:自由概率和随机矩阵理论的一些应用
  • 批准号:
    2316836
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
Theory and Practice of Deep Learning Based on Fisher Information Matrix and MDL Principle
基于Fisher信息矩阵和MDL原理的深度学习理论与实践
  • 批准号:
    23H05492
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
symmetry and integrability of ADE matrix model probing critical phenomena of supersymmetric gauge theory by symmetry and integrability
ADE 矩阵模型的对称性和可积性 通过对称性和可积性探讨超对称规范理论的关键现象
  • 批准号:
    23K03394
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Non-Asymptotic Random Matrix Theory and Connections
职业:非渐近随机矩阵理论和联系
  • 批准号:
    2237646
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Continuing Grant
Matrix Theory with Applications to Positivity and Discrete Mathematics
矩阵理论及其在正性和离散数学中的应用
  • 批准号:
    RGPIN-2019-03934
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Functional Analytic Methods in Matrix Theory, Majorization and Quantum Information
矩阵理论、大化和量子信息中的泛函分析方法
  • 批准号:
    RGPIN-2022-04149
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Non-invasive neurosurgical planning with Random Matrix Theory MRI
利用随机矩阵理论 MRI 进行无创神经外科规划
  • 批准号:
    10541655
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了