Investigation of Turbulence Closure Models for Challenging Aerodynamic Flows

具有挑战性的空气动力流的湍流闭合模型的研究

基本信息

  • 批准号:
    484279-2015
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The primary objective of the project is to investigate and resolve MAYA's challenge to simulate complex turbulent aerodynamic flows. To solve this challenge, the task would be to investigate their present shortcomings and then implement, validate, and verify the necessary algorithms for the k-epsilon, Wilcox k-omega, and the Mentor k-omega SST turbulence models within MAYA's Code-base for external aerodynamic flows. MAYA's commercial computational fluid dynamics solvers have a widespread usage over a range of applications including but not limited to electronics cooling, process analysis and automotive heat transfer. However, they have an immediate market need to extend their software for aerodynamic analysis, i.e., computation of lift and drag forces on vehicles and engineering structures. The research-oriented computational fluid dynamics solvers that are being developed in Professor Nadarajah's group contain many cutting-edge technologies for the analysis of aerodynamic flows and hence this short term project may be a starting point for a longer term research collaboration. This project focuses on developing recommendations of state-of-the-art technologies which could be applied to MAYA's solvers for transonic aerodynamic flows. In particular, we wish to focus on recommendations regarding the further development of two-equation turbulence models. The project will focus on comparing MAYA's parallel CFD solver with a number of NASA benchmark cases for which either experimental or numerical results are available. The results of the benchmark cases will be compared with published results, and those from Professor Nadarajah's solver.
该项目的主要目标是调查和解决玛雅在模拟复杂环境方面的挑战 湍流空气动力流动。要解决这一挑战,任务将是调查他们的现状 缺点,然后实现、验证和验证k-epsilon、Wilcox所需的算法 K-omega和Mentor k-omega SST湍流模型 空气动力流动。Maya的商业计算流体动力学解算器在 一系列应用,包括但不限于电子冷却、工艺分析和汽车加热 调职。然而,他们有一个迫切的市场需求来扩展他们的空气动力学分析软件,即, 车辆和工程结构上升力和阻力的计算。面向研究的计算 Nadarajah教授的团队正在开发的流体动力学解算器包含许多尖端技术 分析空气动力流动的技术,因此这一短期项目可能是 更长期的研究合作。这个项目的重点是开发最先进的建议 可应用于MAYA跨音速空气动力流动解算器的技术。特别是,我们 希望集中讨论关于进一步发展两方程湍流模型的建议。这个 该项目将专注于将Maya的并行CFD解算器与NASA的一些基准案例进行比较 其中既有实验结果,也有数值结果。基准案例的结果将是 与已发表的结果和Nadarajah教授的求解器的结果进行了比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nadarajah, Sivakumaran其他文献

Nadarajah, Sivakumaran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nadarajah, Sivakumaran', 18)}}的其他基金

Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
An Analysis and Design Framework for Extensive Natural Laminar Flow of Aircraft Wings
飞机机翼大范围自然层流分析与设计框架
  • 批准号:
    538870-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
An Analysis and Design Framework for Extensive Natural Laminar Flow of Aircraft Wings
飞机机翼大范围自然层流分析与设计框架
  • 批准号:
    538870-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Aerodynamic and acoustic performance of a kinetic energy recovery system for engine test cells
发动机测试室动能回收系统的空气动力学和声学性能
  • 批准号:
    538826-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Aerodynamic and acoustic performance of a kinetic energy recovery system for engine test cells
发动机测试室动能回收系统的空气动力学和声学性能
  • 批准号:
    538826-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Robust Aerodynamic Shape Optimization of Automotive Vehicles
汽车稳健的空气动力学形状优化
  • 批准号:
    538511-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
An Analysis and Design Framework for Extensive Natural Laminar Flow of Aircraft Wings
飞机机翼大范围自然层流分析与设计框架
  • 批准号:
    538870-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants

相似海外基金

Characterizing Transition to Turbulence in Pulsatile Pipe Flow
表征脉动管流中的湍流转变
  • 批准号:
    2335760
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Traversing the Gray Zone with Scale-aware Turbulence Closures
通过尺度感知的湍流闭合穿越灰色区域
  • 批准号:
    2337399
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
  • 批准号:
    2344156
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
  • 批准号:
    2414424
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Turbulence Intermittency for Cloud Physics (TITCHY)
云物理的湍流间歇性 (TITCHY)
  • 批准号:
    EP/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
Understanding Pulsatile Helical Flow: Scaling, Turbulence, and Helicity Control
了解脉动螺旋流:缩放、湍流和螺旋度控制
  • 批准号:
    2342517
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
CAREER: Characterization of Turbulence in Urban Environments for Wind Hazard Mitigation
职业:城市环境湍流特征以减轻风灾
  • 批准号:
    2340755
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347422
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Stochastic Modeling of Turbulence over Rough Walls: Theory, Experiments, and Simulations
粗糙壁上湍流的随机建模:理论、实验和模拟
  • 批准号:
    2412025
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了