Characterizing Stationarities Using Distributions of Random Locations

使用随机位置的分布表征平稳性

基本信息

  • 批准号:
    RGPIN-2014-04840
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Stationarity is the shift invariance of the distribution of a stochastic process or a random field. It plays an essential role in probability, statistics and their applications, and has been intensively studied for a long time. Although much is known about stationarity and a rich stream of literature can be found, there remain properties whose relation to stationarity may be intrinsic yet not easy to perceive. Recently, the applicant, collaborating with Gennady Samorodnitsky, has investigated the relation between strict stationarity of stochastic processes and the distributions of random locations, such as the location of the path supremum/infimum, hitting times, etc. We introduced a family of random locations and proved that under stationarity, the distribution of any random location in this family must satisfy a group of very specific conditions. It was further proved that this group of conditions is actually equivalent to the stationarity of the process, in the sense that a process is stationary if and only if the conditions are satisfied for all the random locations in the family. In this way we characterized the one dimensional strict stationarity by the distributions of random locations. Later, we also discovered that similar results and characterization exist between the strict stationarity of the increments of a process and a subclass of these random locations. The proposed research comes from the observation of the existence of a general duality between the spaces of stochastic processes and the sets of random locations, in the sense that a process belongs to some space presenting a certain type of stationarity, if and only if the conditions that we derived hold for all the members in a corresponding set of random locations. The previous works show that such a duality can be established for one dimensional strict stationary processes and one dimensional stationary increment processes. I propose to extend these results to other notions of stationarity, thus building a systemic way to characterize, and even define, different stationarities by identifying different classes of random locations. First examples may include relatively stationary processes (processes whose distributions are shift invariant only restricted to a compact interval) and weak-sense stationary processes (processes whose first two moments are shift invariant). Both of these are widely used to model signals, water levels, economic data and many other applications of significant value to Canada. I also propose to make a further development of the theory of random locations, as well as to construct new statistical tests for various stationarities using the properties of the distributions of random locations. The proposed work will contribute significantly in both probability and statistics. It leads to a new family of statistical tests for stationarities, which will be especially useful when only partial information, such as the occurrence time of certain event, is known for a process. Such tests can not be established without the results obtained in this research. The properties of the distributions of random locations will also result in optimal bounds for the expectation of the functions of random locations, which can be used in various optimization problems. Moreover, there is a natural link between the setting of random locations and queueing systems with deadlines, and the results of this research can answer certain pending questions in queueing theory. Last but not least, the distributional knowledge of random locations will be helpful in applied areas such as credit risk management and earthquake prediction, therefore has potential value for improving the management of several industries which are critical to the Canadian public.
平稳性是随机过程或随机场分布的平移不变性。它在概率统计及其应用中起着至关重要的作用,长期以来一直受到广泛的研究。虽然关于平稳性的知识很多,而且可以找到丰富的文献,但仍有一些性质与平稳性可能是内在的,但不容易被察觉。 最近,申请人与Gennady Samorodnitsky合作,研究了随机过程的严格平稳性与随机位置的分布之间的关系,如路径上确界/下确界的位置、击中时间等。我们引入了一族随机位置,并证明了在平稳性下,这个族中任何随机位置的分布都必须满足一组非常特殊的条件。进一步证明了这组条件实际上等价于过程的平稳性,即过程是平稳的当且仅当对族中的所有随机位置都满足这些条件。这样,我们用随机位置的分布刻画了一维严格平稳性。后来,我们还发现在过程增量的严格平稳性和这些随机位置的子类之间存在类似的结果和刻画。 所提出的研究来自于观察到随机过程空间和随机位置集之间存在一般对偶,即一个过程属于呈现某种类型平稳性的某个空间,当且仅当我们推导的条件对相应的随机位置集中的所有成员成立。前人的工作表明,对于一维严格平稳过程和一维平稳增量过程,都可以建立这样的对偶。我建议将这些结果推广到其他关于平稳性的概念,从而建立一种系统的方法来通过识别不同类别的随机位置来表征甚至定义不同的平稳性。第一个例子可以包括相对平稳过程(其分布平移不变的过程仅限于紧致区间)和弱感觉平稳过程(其前两个矩是平移不变的过程)。这两种方法都被广泛用于对信号、水位、经济数据和许多其他对加拿大有重要价值的应用进行建模。作者还建议进一步发展随机位置理论,并利用随机位置分布的性质构造各种平稳性的新的统计检验。 拟议的工作将在概率和统计学方面做出重大贡献。它导致了一系列新的平稳性统计检验,当一个过程只有部分信息,如特定事件的发生时间时,这一检验将特别有用。如果没有这项研究的结果,就不能建立这样的测试。随机位置分布的性质也将导致随机位置函数的期望的最优界,这可用于各种优化问题。此外,随机位置的设置与具有截止期的排队系统之间存在着天然的联系,本研究的结果可以回答排队论中的某些悬而未决的问题。最后但并非最不重要的一点是,随机地点的分布知识将有助于信用风险管理和地震预测等应用领域,因此对于改善对加拿大公众至关重要的几个行业的管理具有潜在价值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shen, Yi其他文献

Long non-coding RNA MALAT1 regulates retinal neurodegeneration through CREB signaling.
  • DOI:
    10.15252/emmm.202216660
  • 发表时间:
    2022-12-07
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Yao, Jin;Wang, Xiao-Qun;Li, Yu-Jie;Shan, Kun;Yang, Hong;Wang, Yang-Ning-Zhi;Yao, Mu-Di;Liu, Chang;Li, Xiu-Miao;Shen, Yi;Liu, Jing-Yu;Cheng, Hong;Yuan, Jun;Zhang, Yang-Yang;Jiang, Qin;Yan, Biao
  • 通讯作者:
    Yan, Biao
Global exponential stability in a Lagrange sense for memristive recurrent neural networks with time-varying delays
具有时变延迟的忆阻循环神经网络拉格朗日意义上的全局指数稳定性
  • DOI:
    10.1016/j.neucom.2014.08.064
  • 发表时间:
    2015-02
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Zhang, Guodong;Shen, Yi;Xu, Chengjie
  • 通讯作者:
    Xu, Chengjie
Asynchronous finite-time H-infinity control for switched linear systems via mode-dependent dynamic state-feedback
通过依赖于模式的动态状态反馈对切换线性系统进行异步有限时间 H 无穷大控制
Robust H(infinity) Control for Stochastic Markovian Jupp Systems
随机马尔可夫Jupp系统的鲁棒H(无穷大)控制
Almost sure exponential stability of backward EulerMaruyama discretizations for hybrid stochastic differential equations
混合随机微分方程后向 EulerMaruyama 离散化的几乎确定的指数稳定性

Shen, Yi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shen, Yi', 18)}}的其他基金

Probabilistic symmetries, extreme values and random topology
概率对称性、极值和随机拓扑
  • 批准号:
    RGPIN-2020-04356
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic symmetries, extreme values and random topology
概率对称性、极值和随机拓扑
  • 批准号:
    RGPIN-2020-04356
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic symmetries, extreme values and random topology
概率对称性、极值和随机拓扑
  • 批准号:
    RGPIN-2020-04356
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Characterizing Stationarities Using Distributions of Random Locations
使用随机位置的分布表征平稳性
  • 批准号:
    RGPIN-2014-04840
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Characterizing Stationarities Using Distributions of Random Locations
使用随机位置的分布表征平稳性
  • 批准号:
    RGPIN-2014-04840
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Characterizing Stationarities Using Distributions of Random Locations
使用随机位置的分布表征平稳性
  • 批准号:
    RGPIN-2014-04840
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Characterizing Stationarities Using Distributions of Random Locations
使用随机位置的分布表征平稳性
  • 批准号:
    RGPIN-2014-04840
  • 财政年份:
    2014
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Devising robust Multi-Armed Bandit algorithms in the presence of non-stationarities and long-range dependencies
在存在非平稳性和远程依赖性的情况下设计稳健的 Multi-Armed Bandit 算法
  • 批准号:
    2437073
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Studentship
Characterizing Stationarities Using Distributions of Random Locations
使用随机位置的分布表征平稳性
  • 批准号:
    RGPIN-2014-04840
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Characterizing Stationarities Using Distributions of Random Locations
使用随机位置的分布表征平稳性
  • 批准号:
    RGPIN-2014-04840
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Characterizing Stationarities Using Distributions of Random Locations
使用随机位置的分布表征平稳性
  • 批准号:
    RGPIN-2014-04840
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Characterizing Stationarities Using Distributions of Random Locations
使用随机位置的分布表征平稳性
  • 批准号:
    RGPIN-2014-04840
  • 财政年份:
    2014
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive approaches to deal with non-stationarities and cortical plasticity in brain computer interfaces.
处理脑机接口中的非平稳性和皮质可塑性的自适应方法。
  • 批准号:
    348737-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Adaptive approaches to deal with non-stationarities and cortical plasticity in brain computer interfaces.
处理脑机接口中的非平稳性和皮质可塑性的自适应方法。
  • 批准号:
    348737-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Adaptive approaches to deal with non-stationarities and cortical plasticity in brain computer interfaces.
处理脑机接口中的非平稳性和皮质可塑性的自适应方法。
  • 批准号:
    348737-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了