Banach Algebras in Abstract Harmonic Analysis

抽象调和分析中的巴纳赫代数

基本信息

  • 批准号:
    RGPIN-2014-05514
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The field of abstract harmonic analysis is a blend of two important branches of mathematics: classical Fourier analysis and the theory of operator algebras. Fourier analysis gets its name from the French mathematician Joseph Fourier. In addition to being one of the foremost mathematicians of the 19th century, Fourier was an engineer in Napoleon's army who's work had a profound impact on not only theoretical problems in mathematics and physics but was also the cornerstone of many future applications. His most famous work was "The Analytical Theory of Heat" (1822) where he showed that the manner in which heat was conducted through a solid body could be analyzed by breaking down the problem into its fundamental component parts in much the same way as a sound wave can be reproduced by identifying its core harmonics. The mathematician Lagrange, who predated Fourier by roughly thirty years, used similar methods to analyze the behaviour of a vibrating string. (Hence the name "harmonic analysis".) In fact, his theory could be used to study many phenomena that involved periodic or wave-like behaviour. Today variants of this sort of analysis are used in diverse applications ranging from the encoding of images and audio on CDs and DVDs through to finger print readers used by law enforcement, and image reconstruction via CT scans. The study of ''operators'' on higher, or even infinite dimensional analogs of our three dimensional world provides the mathematical foundation for quantum mechanics, a branch of physics that generally relates to behaviours that are essentially not observable by the naked eye. Instead they occur at the atomic or subatomic level. Quantum mechanics is a beautiful theory that can provide us with incredible insight into the workings of the most complex parts of our universe. In addition, it is certainly not without its practical applications. The discovery of transistors and the development of modern lasers both have their roots in quantum theory. Quantum mechanics also has the potential for further revolutionary applications that could change how our world works. For example, we are now on the cusp of the development of quantum computers. These are machines with extraordinary computational potential, dwarfing any classical computer that is currently in existence. Should they come to full fruition, quantum computer have the potential to solve problems that at this point are far beyond our current capabilities. The objects I study are Banach algebras arising from locally compact groups. The study of such objects is a natural abstraction of Fourier analysis. The key tools in my approach to studying these objects, and the groups that they stem from, comes mainly from the theory of operator algebras. While my own interests generally do not lie in the potential for immediate applications to real world problems, within the scope of my research there is the potential for such an outcome. In particular, with one of my Ph.D. students, who already holds a doctoral degree in Electrical Engineering, we will look at how the representation theory of certain locally compact groups impacts the theory of wavelets, a modern variant of Fourier's classical approach to analysis of periodic phenomena. It is the goal of my research to further our understanding of the core objects of abstract harmonic analysis. Within this context there is substantial opportunity for the training of highly qualified personnel.
抽象调和分析领域是数学的两个重要分支:经典傅立叶分析和算子代数理论的融合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Forrest, Brian其他文献

Forrest, Brian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Forrest, Brian', 18)}}的其他基金

Banach Algebras in Abstract Harmonic Analysis
抽象调和分析中的巴纳赫代数
  • 批准号:
    RGPIN-2014-05514
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Banach Algebras in Abstract Harmonic Analysis
抽象调和分析中的巴纳赫代数
  • 批准号:
    RGPIN-2014-05514
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Banach Algebras in Abstract Harmonic Analysis
抽象调和分析中的巴纳赫代数
  • 批准号:
    RGPIN-2014-05514
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Banach Algebras in Abstract Harmonic Analysis
抽象调和分析中的巴纳赫代数
  • 批准号:
    RGPIN-2014-05514
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Banach Algebras in Abstract Harmonic Analysis
抽象调和分析中的巴纳赫代数
  • 批准号:
    RGPIN-2014-05514
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Banach algebra and operator space techniques in abstract harmonic analysis
Banach代数和算子空间技术在抽象调和分析中的应用
  • 批准号:
    90749-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Banach algebra and operator space techniques in abstract harmonic analysis
Banach代数和算子空间技术在抽象调和分析中的应用
  • 批准号:
    90749-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Banach algebra and operator space techniques in abstract harmonic analysis
Banach代数和算子空间技术在抽象调和分析中的应用
  • 批准号:
    90749-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Banach algebra and operator space techniques in abstract harmonic analysis
Banach代数和算子空间技术在抽象调和分析中的应用
  • 批准号:
    90749-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Banach algebra and operator space techniques in abstract harmonic analysis
Banach代数和算子空间技术在抽象调和分析中的应用
  • 批准号:
    90749-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Banach algebras in abstract harmonic analysis
抽象调和分析中的巴纳赫代数
  • 批准号:
    RGPIN-2015-05044
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Banach Algebras in Abstract Harmonic Analysis
抽象调和分析中的巴纳赫代数
  • 批准号:
    RGPIN-2014-05514
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Banach Algebras in Abstract Harmonic Analysis
抽象调和分析中的巴纳赫代数
  • 批准号:
    RGPIN-2014-05514
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras in abstract harmonic analysis
抽象调和分析中的巴纳赫代数
  • 批准号:
    RGPIN-2015-05044
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras in abstract harmonic analysis
抽象调和分析中的巴纳赫代数
  • 批准号:
    RGPIN-2015-05044
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras in abstract harmonic analysis
抽象调和分析中的巴纳赫代数
  • 批准号:
    RGPIN-2015-05044
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Banach Algebras in Abstract Harmonic Analysis
抽象调和分析中的巴纳赫代数
  • 批准号:
    RGPIN-2014-05514
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras in abstract harmonic analysis
抽象调和分析中的巴纳赫代数
  • 批准号:
    RGPIN-2015-05044
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Banach Algebras in Abstract Harmonic Analysis
抽象调和分析中的巴纳赫代数
  • 批准号:
    RGPIN-2014-05514
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras in abstract harmonic analysis
抽象调和分析中的巴纳赫代数
  • 批准号:
    RGPIN-2015-05044
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了