Planetary Mantle Dynamics

行星地幔动力学

基本信息

  • 批准号:
    RGPIN-2014-05913
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Heat loss from the terrestrial planets in our solar system is governed by convection in their outer silicate shells. In the case of the Earth, this convection is manifested as plate tectonics and the continental drift that results. The research encompassed in this proposal will focus on the thermal evolution of planetary interiors and the feedback between surface and interior dynamics. The methodology will focus on utilizing computer models of two- and three-dimensional convecting fluids contained within either self-gravitating spherical shells or plane-layer systems. Motivation for a substantial amount of the proposed activity derives from the observation that the Earth is the only planet in the solar system featuring plate tectonics and our desire to understand why this is so. Specific topics of interest will include examining the influence of system geometry (i.e., mantle thickness) and particularly planetary core size on the thermal character of mantle convection. In addition, we shall investigate the influence of a mobile surface on mantle convection as well as the physical requirements for plate motion. The nature of the thermal evolution of rocky planets and icy moons will be explored by investigating the influence of fluid parameters (e.g., thermal viscosity dependence) on convection characteristics. Moreover, the role in planetary thermal evolution that may be played by continents and deep chemically distinct anomalies will drive a portion of the proposed work. Extension of the models and applications to exosolar planets will also be examined. The research is facilitated by utilizing sophisticated computational models run on distributed memory parallel computing platforms (i.e., utilizing many processors). Presently, a small planetary interiors group of four graduate students works under my guidance at the University of Toronto-Scarborough (UTSC) and benefits from access to the SciNet General Purpose Computing (GPC) Cluster. Over the past five years the research group has migrated all of the computer codes used for our research to SciNet's GPC. Consequently, all tools required for the research proposed here are already available, tested and ready to use. In addition, we are now utilizing codes developed at UTSC as well as new computer codes, obtained from collaborative ventures that are well suited to capitalize on SciNet's capabilities. This will enable the research projects described here to probe physical behaviour in regimes, and on time-scales, not previously accessible. For example, the codes and high performance computing facilities now available will allow researchers at UTSC to model planetary convection in systems featuring both the convective vigour and the surface area of an Earth-like planet over periods simulating billions of years of evolution. The underlying theme of all of these studies is investigation of the time-dependence of planetary heat loss and surface motion. The research involved will train highly qualified personnel (HQP) in the use of high performance computing for investigating problems in geophysical fluid dynamics. To undertake these projects , support for a group of six researchers is sought. Over the next five years, the general makeup of this group will include the Principal Investigator, a post-doctoral research assistant and four graduate students, engaged in both MSc and PhD studies. These HQP will be engaged in international collaborative research stemming from use of the computing tools required for the research. Funding would support the completion of six PhD and four MSc degrees and the HQP will complete their research projects having obtained experience that will include training as geodynamicists and exposure to the methods by which scientific results are disseminated.
太阳系中类地行星的热损失是由它们外层硅酸盐壳中的对流控制的。就地球而言,这种对流表现为板块构造和由此产生的大陆漂移。本提案所包含的研究将集中在行星内部的热演化以及表面和内部动力学之间的反馈。该方法将侧重于利用计算机模型的二维和三维对流流体包含在自重力球壳或平面层系统。提出大量活动的动机源于这样一种观察:地球是太阳系中唯一具有板块构造特征的行星,我们渴望理解为什么会这样。具体感兴趣的主题将包括检查系统几何形状(即地幔厚度),特别是行星核心大小对地幔对流热特性的影响。此外,我们将研究活动表面对地幔对流的影响以及板块运动的物理条件。通过研究流体参数(如热粘度依赖性)对对流特性的影响,将探索岩石行星和冰卫星热演化的本质。此外,大陆和深层化学异常可能在行星热演化中发挥的作用将推动部分拟议的工作。还将研究模型的扩展及其在系外行星上的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lowman, Julian其他文献

Lowman, Julian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lowman, Julian', 18)}}的其他基金

The evolution of the interior of the Earth and solid planets
地球和固体行星内部的演化
  • 批准号:
    RGPIN-2019-06481
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
The evolution of the interior of the Earth and solid planets
地球和固体行星内部的演化
  • 批准号:
    RGPIN-2019-06481
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
The evolution of the interior of the Earth and solid planets
地球和固体行星内部的演化
  • 批准号:
    RGPIN-2019-06481
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
The evolution of the interior of the Earth and solid planets
地球和固体行星内部的演化
  • 批准号:
    RGPIN-2019-06481
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Planetary Mantle Dynamics
行星地幔动力学
  • 批准号:
    RGPIN-2014-05913
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Planetary Mantle Dynamics
行星地幔动力学
  • 批准号:
    RGPIN-2014-05913
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Planetary Mantle Dynamics
行星地幔动力学
  • 批准号:
    RGPIN-2014-05913
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Planetary Mantle Dynamics
行星地幔动力学
  • 批准号:
    RGPIN-2014-05913
  • 财政年份:
    2014
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Mantle convection in the earth and terrestrial planets
地球和类地行星的地幔对流
  • 批准号:
    327084-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Mantle convection in the earth and terrestrial planets
地球和类地行星的地幔对流
  • 批准号:
    327084-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Investigating Periodicities in Abyssal Hill Morphology of the Atlantic Ocean: Possible Evidence of Mantle Dynamics
研究大西洋深海山形态的周期性:地幔动力学的可能证据
  • 批准号:
    2341367
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Structure and dynamics of the subcontinental lithospheric mantle over the Central and Eastern North American continent, constrained by numerical modeling based on tomography models
基于层析成像模型的数值模拟约束北美大陆中部和东部次大陆岩石圈地幔的结构和动力学
  • 批准号:
    2240943
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Constraining ocean-mantle dynamics by improving shear-wave splitting with ocean bottom seismometers
通过海底地震仪改进剪切波分裂来约束洋幔动力学
  • 批准号:
    2303839
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
From Snowball Earth to Animals: the Influence of Mantle Dynamics
从雪球地球到动物:地幔动力学的影响
  • 批准号:
    FT230100001
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    ARC Future Fellowships
Mantle dynamics beneath the North Atlantic region from integrated seismic imaging using new regional seafloor data and global datasets
使用新的区域海底数据和全球数据集通过综合地震成像研究北大西洋地区下方的地幔动力学
  • 批准号:
    NE/X000060/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Research Grant
Collaborative Research: How have orogenies, rifting, and recent mantle dynamics shaped the lithosphere beneath the New England Appalachians?
合作研究:造山运动、裂谷和最近的地幔动力学如何塑造新英格兰阿巴拉契亚山脉下方的岩石圈?
  • 批准号:
    2146804
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Collaborative Research: How have orogenesis, rifting, and recent mantle dynamics shaped the lithosphere beneath the New England Appalachians?
合作研究:造山运动、裂谷和最近的地幔动力学如何塑造新英格兰阿巴拉契亚山脉下方的岩石圈?
  • 批准号:
    2147426
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Finding the fingerprint of mantle dynamics on plate tectonic processes
寻找板块构造过程中地幔动力学的指纹
  • 批准号:
    DGECR-2022-00140
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Launch Supplement
Collaborative Research: Quantifying melt in the mantle and controls on lithosphere-asthenosphere dynamics and intraplate magmatism: a joint seismic and EM survey of the Cocos plate
合作研究:量化地幔熔化并控制岩石圈-软流圈动力学和板内岩浆作用:科科斯板块的联合地震和电磁调查
  • 批准号:
    2146896
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
Collaborative Research: Quantifying melt in the mantle and controls on lithosphere-asthenosphere dynamics and intraplate magmatism: a joint seismic and EM survey of the Cocos plate
合作研究:量化地幔熔化并控制岩石圈-软流圈动力学和板内岩浆作用:科科斯板块的联合地震和电磁调查
  • 批准号:
    2146911
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了