Parallel Heterogeneous Algorithms for Computational Science
计算科学的并行异构算法
基本信息
- 批准号:261544-2012
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High performance computing (HPC) resources are becoming more readily available at a reasonable cost, particularly with the availability of programmable graphics processing units (GPUs). The parallelism is challenging to exploit in practice, and the rapidly evolving hardware can lead to increased maintenance cost of software. This proposal addresses the challenges associated with developing dynamic architecture-aware parallel scientific computing applications, to deal with the rapidly changing nature of HPC resources. GPUs presently contain hundreds of cores, which when combined with the growth of the number of cores per CPU is resulting in a dramatic increase in the overall degree of parallelism required of applications. Three levels of parallelism must be considered to fully use such systems: coarse grained thread-level parallelism for CPUs, massive fine grained data parallelism for GPUs, and message passing for clusters of CPUs/GPUs. The balance between these three types of parallelism also needs to be matched to the computing system. Therefore static approaches to algorithm design and implementation may hinder portability of performance across different types of parallel computers. This proposal focuses on new algorithmic approaches to finding sufficient multi-level parallelism and on identification and scheduling of tasks, taking into account the performance of each computing platform component and the communication time between components. This will lead to applications that are able to adapt to different platforms by scheduling tasks to the heterogeneous components at runtime through efficient scheduling algorithms and selection of optimal values of performance-critical parameters. Work will focus initially on two areas: dynamic programming and solution of time dependent partial differential equations. In both areas new algorithmic approaches combined with scheduling on heterogeneous platforms will lead to a range of flexible high performance scientific computing applications in areas such as simulation of physical and biological processes and in bioinformatics.
高性能计算 (HPC) 资源变得越来越容易以合理的成本获得,特别是随着可编程图形处理单元 (GPU) 的出现。在实践中,并行性的利用具有挑战性,而且快速发展的硬件可能会导致软件维护成本增加。该提案解决了与开发动态架构感知并行科学计算应用程序相关的挑战,以应对 HPC 资源快速变化的性质。 GPU 目前包含数百个核心,再加上每个 CPU 核心数量的增长,导致应用程序所需的总体并行度急剧增加。要充分利用此类系统,必须考虑三个级别的并行性:CPU 的粗粒度线程级并行性、GPU 的大规模细粒度数据并行性以及 CPU/GPU 集群的消息传递。这三种并行性之间的平衡也需要与计算系统相匹配。因此,算法设计和实现的静态方法可能会阻碍不同类型并行计算机之间的性能可移植性。该提案侧重于寻找足够的多级并行性的新算法方法以及任务的识别和调度,同时考虑到每个计算平台组件的性能以及组件之间的通信时间。这将使应用程序能够通过高效的调度算法和选择性能关键参数的最佳值在运行时将任务调度到异构组件来适应不同的平台。工作最初将集中在两个领域:动态规划和与时间相关的偏微分方程的求解。在这两个领域,新的算法方法与异构平台上的调度相结合将在物理和生物过程的模拟以及生物信息学等领域带来一系列灵活的高性能科学计算应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aubanel, Eric其他文献
Aubanel, Eric的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aubanel, Eric', 18)}}的其他基金
Cognitive Aspects of Parallel Programming
并行编程的认知方面
- 批准号:
RGPIN-2018-04811 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Cognitive Aspects of Parallel Programming
并行编程的认知方面
- 批准号:
RGPIN-2018-04811 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Cognitive Aspects of Parallel Programming
并行编程的认知方面
- 批准号:
RGPIN-2018-04811 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Cognitive Aspects of Parallel Programming
并行编程的认知方面
- 批准号:
RGPIN-2018-04811 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Cognitive Aspects of Parallel Programming
并行编程的认知方面
- 批准号:
RGPIN-2018-04811 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Parallel Heterogeneous Algorithms for Computational Science
计算科学的并行异构算法
- 批准号:
261544-2012 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Parallel Heterogeneous Algorithms for Computational Science
计算科学的并行异构算法
- 批准号:
261544-2012 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Parallel Heterogeneous Algorithms for Computational Science
计算科学的并行异构算法
- 批准号:
261544-2012 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
High Performance Computational Fluid Dynamics on Heterogeneous GPU/manycore Co-processors
异构 GPU/众核协处理器上的高性能计算流体动力学
- 批准号:
447682-2013 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Engage Grants Program
Parallel Heterogeneous Algorithms for Computational Science
计算科学的并行异构算法
- 批准号:
261544-2012 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
AF: Small: Communication-Aware Algorithms for Dynamic Allocation of Heterogeneous Resources
AF:小型:用于异构资源动态分配的通信感知算法
- 批准号:
2335187 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
CAREER: Reinforcement Learning-Based Control of Heterogeneous Multi-Agent Systems in Structured Environments: Algorithms and Complexity
职业:结构化环境中异构多智能体系统的基于强化学习的控制:算法和复杂性
- 批准号:
2237830 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
Clustering and semi-supervised learning on large heterogeneous graphs: Mathematical formulations and numerical optimization algorithms
大型异构图上的聚类和半监督学习:数学公式和数值优化算法
- 批准号:
569398-2022 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Cost minimization algorithms for heterogeneous mobile and cloud computing environments
异构移动和云计算环境的成本最小化算法
- 批准号:
489716-2016 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Optimization and autonomous distributed algorithms for heterogeneous wireless protocol environment
异构无线协议环境的优化与自治分布式算法
- 批准号:
22H01493 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Cost minimization algorithms for heterogeneous mobile and cloud computing environments
异构移动和云计算环境的成本最小化算法
- 批准号:
489716-2016 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Cost minimization algorithms for heterogeneous mobile and cloud computing environments
异构移动和云计算环境的成本最小化算法
- 批准号:
489716-2016 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CIF: Small: Collaborative Research: Rank Aggregation with Heterogeneous Information Sources: Efficient Algorithms and Fundamental Limits
CIF:小型:协作研究:异构信息源的排名聚合:高效算法和基本限制
- 批准号:
1911168 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Rank Aggregation with Heterogeneous Information Sources: Efficient Algorithms and Fundamental Limits
CIF:小型:协作研究:异构信息源的排名聚合:高效算法和基本限制
- 批准号:
1908544 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
- 批准号:
1911067 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant