Dirac equation in Graphene
石墨烯中的狄拉克方程
基本信息
- 批准号:498202-2016
- 负责人:
- 金额:$ 0.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:University Undergraduate Student Research Awards
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
No summary - Aucun sommaire
没有摘要-Aucun Sommaire
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirk, Keegan其他文献
Kirk, Keegan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirk, Keegan', 18)}}的其他基金
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
- 批准号:
534997-2019 - 财政年份:2021
- 资助金额:
$ 0.33万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Hybridizable discontinuous Galerkin methods for the Cahn-Hilliard-Navier-Stokes system
Cahn-Hilliard-Navier-Stokes 系统的可杂交间断伽辽金方法
- 批准号:
566831-2021 - 财政年份:2021
- 资助金额:
$ 0.33万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
- 批准号:
534997-2019 - 财政年份:2020
- 资助金额:
$ 0.33万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
- 批准号:
534997-2019 - 财政年份:2019
- 资助金额:
$ 0.33万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Convergence of the Space-time Hybridizable Discontinuous Galerkin Method for the Advection-Diffusion Equation
平流扩散方程时空杂化间断伽辽金法的收敛性
- 批准号:
515129-2017 - 财政年份:2017
- 资助金额:
$ 0.33万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
相似国自然基金
一类双色散非局部波动方程初值问题的理论研究
- 批准号:12301272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
统计力学中的数学物理方程
- 批准号:12371218
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
非光滑Dirac方程的高效数值算法和分析
- 批准号:12371395
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
随机阻尼波动方程的高效保结构算法研究
- 批准号:12301518
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
两类分数阶Choquard方程无穷多解的存在性研究
- 批准号:12301128
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
農泊の地域運営化と多様性対応による持続的発展への転換過程と支援方策
通过农场住宿的区域管理和多样性应对以及支持措施向可持续发展过渡的过程
- 批准号:
24K15508 - 财政年份:2024
- 资助金额:
$ 0.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
調和解析学的手法に基づく藤田型方程式の最大正則性理論の構築
基于调和分析法构建藤田型方程最大正则理论
- 批准号:
24KJ0122 - 财政年份:2024
- 资助金额:
$ 0.33万 - 项目类别:
Grant-in-Aid for JSPS Fellows
地球流体力学および磁気流体力学の基礎方程式に対する数理解析
地球流体动力学和磁流体动力学基本方程的数学分析
- 批准号:
24KJ0138 - 财政年份:2024
- 资助金额:
$ 0.33万 - 项目类别:
Grant-in-Aid for JSPS Fellows
非線形確率微分方程式系における確率カオスの定量解析とその応用
非线性随机微分方程系统随机混沌的定量分析及其应用
- 批准号:
23K20814 - 财政年份:2024
- 资助金额:
$ 0.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
多細胞動態を司る支配方程式のデータ駆動的解読
数据驱动破译控制多细胞动力学的控制方程
- 批准号:
23K21716 - 财政年份:2024
- 资助金额:
$ 0.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)