Autonomous Aerial Vehicle Navigation without Reliance on GPS
不依赖 GPS 的自主飞行器导航
基本信息
- 批准号:RGPIN-2014-03915
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Small autonomous rotorcraft have seen a surge of activity over the last decade, and have demonstrated some fascinating indoor capabilities such as autonomous flight through windows, synchronized flying, and even playing catch. However, progress seems stalled at this point, as systems are currently required to operate within an indoor positioning system (IPS), or in the open where GPS satellite visibility can be ensured. Small rotorcraft are ideally suited to inspection tasks that require precise positioning in close proximity to objects, but their reliance on IPS or GPS for accurate localization and their inability to perceive their environment and navigate through it autonomously drastically reduces their current utility. As a result, today’s small UAVs are essentially tethered to within line-of-sight of operators and away from any objects in their surroundings.
It is time to cut the tether. By augmenting quadrotor vehicles with multi-camera clusters, I plan to develop vision-based localization and mapping algorithms that can complement GPS information and detect obstacles in the environment. Vision-based localization can act as an estimation refinement for GPS and inertial measurements or independently if necessary. Multiple cameras can be easily integrated into small rotorcraft and will provide robust motion estimation and reasonable 3D scene reconstruction, as long as sufficient computation power is available.
The approach to full quadrotor autonomy outlined in this proposal involves four main components. The first component is to develop new low-power, light weight vision and computing modules that exploit the latest advances from smartphone chips to offload much of the computation effort from the central unit. The high framerates that can be achieved with this architecture will be the first defense against poor feature correspondence that plagues current approaches.
The next component involves developing robust methods for vehicle localization in static environments. Given known sensor models and accurate motion predictions, it will be possible to apply integrity monitoring techniques such as parity space thresholding to not only reject erroneous measurements, but do so knowing the probability of failure and false positives when designing the system. The challenge lies in developing the necessary fundamental changes to the description of the visual sensor data, and the expansion of parity space integrity monitoring techniques to nonlinear systems with large numbers of measurements and multiple outliers.
The third component involves the development of a dense reconstruction of the scene for motion planning purposes. Relying on occupancy grid map representations that permit rapid assimilation of new measurements, an overapproximation to the environment will be constructed based on all tracked features in the environment.
Finally, the above methods rely on a static environment assumption, but most applications require autonomous operation near moving objects such as people and vehicles. We will develop methods to detect and track moving objects, eliminating their current negative effect on motion estimation, and enabling vision based tracking and collision avoidance.
With these components integrated onto a single quadrotor vehicle, it will finally be possible to operate autonomously in close proximity to obstacles with and without reliable GPS measurements. Vast inspection markets in manufacturing, energy generation and distribution, infrastructure maintenance and videography await once rotorcraft are able to assess dangers and fly with guaranteed reliability regardless of their surroundings.
在过去的十年中,小型自主旋翼飞机的活动激增,并展示了一些迷人的室内功能,如自动穿越窗户飞行,同步飞行,甚至玩接球游戏。然而,在这一点上,进展似乎停滞不前,因为系统目前需要在室内定位系统(IPS)中运行,或者在可以确保GPS卫星能见度的开放环境中运行。小型旋翼机非常适合需要在物体附近精确定位的检查任务,但它们依赖IPS或GPS进行精确定位,并且无法感知环境并自主导航,这大大降低了它们目前的实用性。因此,今天的小型无人机基本上是在操作员的视线范围内,远离周围的任何物体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Waslander, Steven其他文献
Canadian Adverse Driving Conditions dataset
- DOI:
10.1177/0278364920979368 - 发表时间:
2021-04-01 - 期刊:
- 影响因子:9.2
- 作者:
Pitropov, Matthew;Garcia, Danson Evan;Waslander, Steven - 通讯作者:
Waslander, Steven
Waslander, Steven的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Waslander, Steven', 18)}}的其他基金
Active Robotic Vision: Dynamic Sensor Systems for Informed Robotic Perception
主动机器人视觉:用于知情机器人感知的动态传感器系统
- 批准号:
RGPIN-2019-05939 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Active Robotic Vision: Dynamic Sensor Systems for Informed Robotic Perception
主动机器人视觉:用于知情机器人感知的动态传感器系统
- 批准号:
DGDND-2019-05939 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Active Robotic Vision: Dynamic Sensor Systems for Informed Robotic Perception
主动机器人视觉:用于知情机器人感知的动态传感器系统
- 批准号:
RGPIN-2019-05939 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Active Robotic Vision: Dynamic Sensor Systems for Informed Robotic Perception
主动机器人视觉:用于知情机器人感知的动态传感器系统
- 批准号:
DGDND-2019-05939 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Active Robotic Vision: Dynamic Sensor Systems for Informed Robotic Perception
主动机器人视觉:用于知情机器人感知的动态传感器系统
- 批准号:
RGPIN-2019-05939 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Nanocoatings Testing for Improved Perception in Adverse Weather Autonomous Driving
纳米涂层测试可改善恶劣天气自动驾驶的感知
- 批准号:
538515-2019 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Engage Grants Program
Active Robotic Vision: Dynamic Sensor Systems for Informed Robotic Perception
主动机器人视觉:用于知情机器人感知的动态传感器系统
- 批准号:
RGPIN-2019-05939 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Active Robotic Vision: Dynamic Sensor Systems for Informed Robotic Perception
主动机器人视觉:用于知情机器人感知的动态传感器系统
- 批准号:
DGDND-2019-05939 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Quadrotor perception and planning in confined spaces
四旋翼飞行器在有限空间中的感知和规划
- 批准号:
484724-2015 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Collaborative Research and Development Grants
Autonomous Aerial Vehicle Navigation without Reliance on GPS
不依赖 GPS 的自主飞行器导航
- 批准号:
RGPIN-2014-03915 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Autonomous Unmanned Aerial Vehicle data analysis: is it the key to the many:1 ratio, or are we missing a step?
自主无人机数据分析:是多:1比例的关键,还是我们遗漏了一步?
- 批准号:
2891512 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Studentship
Development of Image Segmentation for Autonomous Driving of Air-land Unmanned Aerial Vehicle
空地无人机自动驾驶图像分割研究进展
- 批准号:
22K12094 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Towards More Autonomous and Safer Unmanned Aerial Vehicle Systems
迈向更自主、更安全的无人机系统
- 批准号:
RGPIN-2020-06608 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Towards More Autonomous and Safer Unmanned Aerial Vehicle Systems
迈向更自主、更安全的无人机系统
- 批准号:
RGPIN-2020-06608 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Towards More Autonomous and Safer Unmanned Aerial Vehicle Systems
迈向更自主、更安全的无人机系统
- 批准号:
RGPIN-2020-06608 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Distributed Terrain Estimation in an Autonomous Ground and Aerial Vehicle System
自主地面和空中飞行器系统中的分布式地形估计
- 批准号:
542676-2019 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Development of an Autonomous Unmanned Aerial Vehicle (AUAV) for an Autonomous Amphibious Robot (AAR)
为自主两栖机器人 (AAR) 开发自主无人机 (AUAV)
- 批准号:
541905-2019 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
University Undergraduate Student Research Awards
Autonomous Aerial Vehicle Navigation without Reliance on GPS
不依赖 GPS 的自主飞行器导航
- 批准号:
RGPIN-2014-03915 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Development of an Autonomous Unmanned Aerial Vehicle (AUAV) for an Autonomous Amphibious Robot (AAR)
为自主两栖机器人 (AAR) 开发自主无人机 (AUAV)
- 批准号:
527992-2018 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
University Undergraduate Student Research Awards
Autonomous Aerial Vehicle Navigation without Reliance on GPS
不依赖 GPS 的自主飞行器导航
- 批准号:
RGPIN-2014-03915 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual