Applications and Innovations for Computational Electromagnetics

计算电磁学的应用和创新

基本信息

  • 批准号:
    RGPIN-2014-03984
  • 负责人:
  • 金额:
    $ 2.7万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Understanding the complex interactions of electromagnetic fields in devices and materials is critical in many application areas, ranging from high-speed circuit design to imaging and non-destructive testing. With the exponential growth in computing power experienced over the past several decades, there has been an ever-increasing demand for the tools that computational electromagnetics can provide to tackle engineering problems. Although there are dozens of methodologies for approaching such problems, the Finite-Difference Time-Domain (FDTD) method has become one of the de facto standards, because of its ability to robustly handle interactions of fields with complicated structures and materials. The applicability and efficiency of the method continues to be a vibrant research area, and in particular the method is being continually expanded to apply to a greater range of larger and more complicated modeling scenarios. The aims of the proposed research are to further improve and extend this method, and thus make it an even more indispensable tool for modeling of scenarios with complex material models and/or large structures. The work covered in this proposal consists of two main research areas. The first is the utilization of efficient wave sources in the FDTD method for modeling in complex environments. The second is to investigate the continued augmentation and innovation of the FDTD method on alternative grids for complex material modeling. The first area of research aims to overcome the restrictions placed upon modeling by complicated antenna geometries, by using the concept of equivalent sources to scale down the required computational resources (e.g. memory and processing power). In the FDTD method, equivalent sources can be used to accurately and efficiently represent radiating sources, thus obviating the need to model the source explicitly, allowing for considerable reduction in computer resource requirements, hence allowing for performance of quicker and/or larger simulations. This is particularly important where forward modeling is utilized in multiple iterations as part of an inverse scattering procedure. Such inversion procedures are used in applications where it is desired to build a map of the actual structure of the environment, for example for mapping underground structures to identify oil reservoirs (of particular importance for Canadian energy industries), or for building a tomographic map of the structure of the breast in order to identify malignant tumours. By improving the modeling capabilities of the underlying simulation tools we are inherently enhancing the capability to deal with more and more complicated and realistic practical problems of interest. The second area of research is intended to overcome the restrictions placed upon modeling by the original FDTD method, which is based upon a rectangular (Cartesian) layout of field components on a 3D grid. This choice of grid layout inherently introduces approximations and errors into the modeling, which can be partly mitigated by choosing a higher spatial resolution in simulation and/or better numerical appoximations, but at the cost of higher computational resources. Recently we have shown that both types of errors can be significantly reduced simply by structuring the FDTD method around a different grid from the outset, called the Lebedev grid. The grid also allows us to model complicated materials with higher accuracy compared to existing methods. In particular, augmentation of the method will allow us to model the propagation of waves in the earth-ionosphere system more accurately. This system is of partiuclar importance to Canadian reseachers involved with Space Physics and atmospheric/magnetospheric modelling.
了解器件和材料中电磁场的复杂相互作用在许多应用领域至关重要,从高速电路设计到成像和无损检测。在过去的几十年里,随着计算能力的指数级增长,人们对计算电磁学工具的需求不断增加,这些工具可以解决工程问题。虽然有几十种方法来解决这类问题,但时域有限差分(FDTD)方法已经成为事实上的标准之一,因为它能够鲁棒地处理复杂结构和材料的场的相互作用。该方法的适用性和效率仍然是一个充满活力的研究领域,特别是该方法正在不断扩展,以适用于更大范围和更复杂的建模场景。本研究的目的是进一步改进和扩展该方法,从而使其成为具有复杂材料模型和/或大型结构的场景建模不可或缺的工具。本提案所涉及的工作包括两个主要研究领域。首先是利用时域有限差分法中的有效波源在复杂环境中进行建模。二是研究FDTD方法在复杂材料建模的替代网格上的持续增强和创新。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Potter, Mike其他文献

On the Nature of Numerical Plane Waves in FDTD
Impact of Ultra High-risk Genetics on Real-world Outcomes of Transplant-eligible Multiple Myeloma Patients.
  • DOI:
    10.1097/hs9.0000000000000831
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Panopoulou, Aikaterini;Easdale, Sandra;Ethell, Mark;Nicholson, Emma;Potter, Mike;Giotas, Asterios;Woods, Helena;Thornton, Tracy;Pawlyn, Charlotte;Boyd, Kevin D.;Kaiser, Martin F.
  • 通讯作者:
    Kaiser, Martin F.

Potter, Mike的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Potter, Mike', 18)}}的其他基金

Applications and Innovations for Computational Electromagnetics
计算电磁学的应用和创新
  • 批准号:
    RGPIN-2014-03984
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Applications and Innovations for Computational Electromagnetics
计算电磁学的应用和创新
  • 批准号:
    RGPIN-2014-03984
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Applications and Innovations for Computational Electromagnetics
计算电磁学的应用和创新
  • 批准号:
    RGPIN-2014-03984
  • 财政年份:
    2015
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Applications and Innovations for Computational Electromagnetics
计算电磁学的应用和创新
  • 批准号:
    RGPIN-2014-03984
  • 财政年份:
    2014
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Developing and Testing Innovations: Computer Science Through Engineering Design in New York
开发和测试创新:纽约的工程设计中的计算机科学
  • 批准号:
    2341962
  • 财政年份:
    2024
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Pioneering reproductive biotechnology innovations for equine breeding
开创马匹育种生殖生物技术创新
  • 批准号:
    LP230100156
  • 财政年份:
    2024
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Linkage Projects
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Place-based approaches to sustainable food supply chains: scaling socio-technical innovations as enablers for enhancing public sector food procurement
基于地方的可持续食品供应链方法:扩大社会技术创新作为加强公共部门食品采购的推动力
  • 批准号:
    ES/Z502807/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Research Grant
Scale Resolving Simulations for Innovations in Turbomachinery Design (SciFi Turbo)
涡轮机械设计创新的尺度解析模拟 (SciFi Turbo)
  • 批准号:
    10111062
  • 财政年份:
    2024
  • 资助金额:
    $ 2.7万
  • 项目类别:
    EU-Funded
Co-designing Innovations in Digital Storytelling with Older Adults
与老年人共同设计数字讲故事的创新
  • 批准号:
    DP240102799
  • 财政年份:
    2024
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Projects
Sustained innovations to promote healthier food in the retail environment
持续创新,在零售环境中推广更健康的食品
  • 批准号:
    DE240100616
  • 财政年份:
    2024
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411153
  • 财政年份:
    2024
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Conference: Translating Molecular Science Innovations into Biotechnology Solutions
会议:将分子科学创新转化为生物技术解决方案
  • 批准号:
    2419731
  • 财政年份:
    2024
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Conference: ElevateHER: Engineering Innovations for Women's Health Discovery
会议:ElevateHER:女性健康探索的工程创新
  • 批准号:
    2422973
  • 财政年份:
    2024
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了