Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.

p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。

基本信息

  • 批准号:
    RGPIN-2014-04642
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Numerical Simulation plays an extremely important role for solving practical problems arising from various fields of engineering, science, finance, and health science as computer technology has rapidly developed in the recent decades. Numerical simulation involves numerical methods, error analysis, assessment of computed solutions, algorithms, and applications. The finite element method (FEM) is today's most adopted numerical method for numerical simulation, and the high-order (p and h-p) FEM provides reliable solutions with high accuracy and lower computational cost. My proposed research will focus on the p and h-p FEM in three dimensions and their applications to nonlinear problems and plate problems. The real world we are living is three-dimensional, and three dimensional models reflect precisely the nature of physical problems in the real world. Therefore Numerical simulation is of greater significance, and is also much more difficult for three-dimensional models than those simplified to one and two dimensions due to the complexity of geometry of polyhedral domains and anisotropic singularities of solutions. The optimal error estimation of the p and h-p version for problems on polyhedral domains is extremely difficult, and has been a challenging issue for decades. The inverse approximation of FE solution of p-version has been an untouched issue so far for three dimensional problems, which could indicate regularity of the solution based on the computed date to improve the efficiency of adaptive algorithms of p and h-p FEM. My proposed research will have important impact on the approximation theory of FEM and practical scientific/engineering computations in three dimensions. Corrosion is an electrochemical reaction with its environment, which causes severe damage to engineering structures such as ships, bridges, and metal containers. A commonly used technique in corrosion engineering is a so-called catholic protection system, which is modeled by a linear elliptical equation with a nonlinear Neumann boundary condition. In this system, impressed current is applied to control the electrical potential on the portion of surface of the engineering structure to be protected. The accurate numerical solution of the electrical potential is essential for the catholic protection. Since the Neumann condition is discontinuous at the changing point where the Neumann condition changes from a linear type to a nonlinear polarization functions, the singularity occurs there, and severely affects the global regularity and convergence of the FE solutions. My proposed research will investigate singularity near the changing point in a countably weighted Sobolev spaces and design a highly accurate h-p finite element method associated with geometric meshes. Obviously, the research will be of great impact on corrosion engineering as well as to the nonlinear analysis generally. Kirchhoff plate is a typical model of the plate problem, which is characterized by a biharmonic equation with various boundary conditions. It is known that the solutions have severe singularity of r^s-type with s >1 at vertices of the polygonal plate. The convergence of the p and h-p FE solutions with C0 and C1 continuity on a general quasi-uniform mesh will be analyzed. There are several key issues to be dealt with:(1) Optimal bound of approximation error in p and h for the singular function measured in the Sobolev H^2-norm on individual element;(2) Construction of a globally C1-continuous and piecewise polynomial without compromising the optimal error bound in the global H^2-norm;(3) Nonconforming p and h-p FEM with C0-elements for singular solution. The progress of the my proposed research will add new knowledge to numerical simulation for the plate problems.
近几十年来,随着计算机技术的迅速发展,数值模拟对于解决工程、科学、金融和健康科学等各个领域出现的实际问题发挥着极其重要的作用。数值模拟涉及数值方法、误差分析、计算解决方案的评估、算法和应用。有限元法 (FEM) 是当今数值模拟中最常用的数值方法,高阶(p 和 h-p)FEM 提供了高精度、计算成本低的可靠解决方案。我提议的研究将集中于三维的 p 和 h-p 有限元及其在非线性问题和板问题中的应用。 我们生活的现实世界是三维的,三维模型准确地反映了现实世界中物理问题的本质。因此,由于多面体域几何结构的复杂性和解的各向异性奇异性,数值模拟具有更大的意义,并且对于三维模型来说比简化为一维和二维模型要困难得多。多面体域问题的 p 和 h-p 版本的最优误差估计极其困难,并且几十年来一直是一个具有挑战性的问题。 p版本有限元解的逆近似一直是迄今为止对于三维问题未触及的问题,它可以根据计算数据指示解的规律性,以提高p和h-p有限元自适应算法的效率。我提出的研究将对有限元逼近理论和三维实际科学/工程计算产生重要影响。 腐蚀是与其环境发生的电化学反应,对船舶、桥梁、金属容器等工程结构造成严重破坏。腐蚀工程中常用的技术是所谓的阴极保护系统,它通过具有非线性诺依曼边界条件的线性椭圆方程进行建模。在该系统中,施加外加电流来控制要保护的工程结构表面部分上的电势。电势的精确数值解对于阴极保护至关重要。由于诺依曼条件在从线性型变为非线性极化函数的转变点处是不连续的,因此该处出现奇点,严重影响有限元解的全局正则性和收敛性。我提出的研究将研究可数加权 Sobolev 空间中变化点附近的奇点,并设计与几何网格相关的高精度 h-p 有限元方法。显然,这项研究将对腐蚀工程以及一般的非线性分析产生重大影响。 基尔霍夫板是板问题的典型模型,其特征是具有各种边界条件的双调和方程。已知解在多边形板的顶点处具有严重的 r^s 型奇异性,且 s >1。将分析具有 C0 和 C1 连续性的 p 和 h-p 有限元解在一般准均匀网格上的收敛性。有几个关键问题需要处理:(1)单个单元上 Sobolev H^2-范数测量的奇异函数的 p 和 h 逼近误差的最优界限;(2)在不影响全局 H^2-范数中最优误差界限的情况下构造全局 C1 连续分段多项式;(3)带有 C0 元素的非相容 p 和 h-p 有限元求解奇异解。我所提出的研究进展将为板材问题的数值模拟增添新的知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guo, Benqi其他文献

STABLE AND COMPATIBLE POLYNOMIAL EXTENSIONS IN THREE DIMENSIONS AND APPLICATIONS TO THE p AND h-p FINITE ELEMENT METHOD
  • DOI:
    10.1137/070688006
  • 发表时间:
    2009-01-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Guo, Benqi;Zhang, Jianming
  • 通讯作者:
    Zhang, Jianming

Guo, Benqi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guo, Benqi', 18)}}的其他基金

Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
  • 批准号:
    RGPIN-2014-04642
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
  • 批准号:
    RGPIN-2014-04642
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
  • 批准号:
    RGPIN-2014-04642
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Reliable p and h-p finite element solutions for nonlinear and linear problems
非线性和线性问题的可靠 p 和 h-p 有限元解
  • 批准号:
    46726-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Reliable p and h-p finite element solutions for nonlinear and linear problems
非线性和线性问题的可靠 p 和 h-p 有限元解
  • 批准号:
    46726-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Reliable p and h-p finite element solutions for nonlinear and linear problems
非线性和线性问题的可靠 p 和 h-p 有限元解
  • 批准号:
    46726-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Reliable p and h-p finite element solutions for nonlinear and linear problems
非线性和线性问题的可靠 p 和 h-p 有限元解
  • 批准号:
    46726-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Reliable p and h-p finite element solutions for nonlinear and linear problems
非线性和线性问题的可靠 p 和 h-p 有限元解
  • 批准号:
    46726-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive algorithms and A-posteriori & A-priori error estimates for the p and h-p finite element methods
自适应算法和后验
  • 批准号:
    46726-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive algorithms and A-posteriori & A-priori error estimates for the p and h-p finite element methods
自适应算法和后验
  • 批准号:
    46726-2004
  • 财政年份:
    2007
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

新型简化Inverse Lax-Wendroff方法的发展与应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高阶格式的Inverse Lax-Wendroff方法及其稳定性分析
  • 批准号:
    11801143
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
  • 批准号:
    RGPIN-2014-04642
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
  • 批准号:
    RGPIN-2014-04642
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
  • 批准号:
    RGPIN-2014-04642
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical investigation of dictionary-based regularization for inverse problems and approximation problems on spheres and balls - with applications to seismic tomography and high-dimensional geophysical modelling
基于字典的正则化球体反演问题和近似问题的数值研究 - 及其在地震层析成像和高维地球物理建模中的应用
  • 批准号:
    226407518
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Research Grants
Fractal-based approximation methods in inverse problems and mathematical imaging
反问题和数学成像中基于分形的近似方法
  • 批准号:
    238898-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Fractal-based approximation methods in inverse problems and image/data compression
反问题和图像/数据压缩中基于分形的近似方法
  • 批准号:
    238898-2001
  • 财政年份:
    2004
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Fractal-based approximation methods in inverse problems and image/data compression
反问题和图像/数据压缩中基于分形的近似方法
  • 批准号:
    238898-2001
  • 财政年份:
    2003
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Fractal-based approximation methods in inverse problems and image/data compression
反问题和图像/数据压缩中基于分形的近似方法
  • 批准号:
    238898-2001
  • 财政年份:
    2002
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Fractal-based approximation methods in inverse problems and image/data compression
反问题和图像/数据压缩中基于分形的近似方法
  • 批准号:
    238898-2001
  • 财政年份:
    2001
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
The direct and inverse problems on the degree of best approximation in Banach spaces
Banach空间中最佳逼近度的正问题和反问题
  • 批准号:
    13640182
  • 财政年份:
    2001
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了