Enhancing Model-based Testing using Software Analytics

使用软件分析增强基于模型的测试

基本信息

  • 批准号:
    RGPIN-2014-05108
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Software is being incorporated into an ever-increasing number of mission and safety-critical systems, including real-time embedded systems (e.g., cruise controls and air traffic control systems), communication platforms (e.g., the BlackBerry and Rogers wireless networks), e-banking infrastructures (e.g., Interac and Visa), e-commerce systems (e.g., the eBay auction system and the Amazon Elastic Compute Cloud), and future e-healthcare networks (e.g., Canada’s Health Infostructure). Such systems provide central and crucial services to our society and thus require high quality software. However, history is full of software failures that have caused numerous problems such as: aircraft have crashed, patients have died from incorrect medication, and key financial systems have broken down. My research is directed towards improving the quality of software. My program focuses on software testing as the most commonly used method of quality assurance in the software industry. Recent research has shown that systematic test automation potentially increases the effectiveness of testing and reduces its cost. Therefore, I will target one of the most studied systematic test automation techniques, model-based testing (MBT), which automatically generates tests from specification models of the system. The goal of my program is to enhance MBT so that it becomes the customary test automation technique in the industry. There are a number of hurdles that make this goal a challenge including the lack of specification models (inputs of MBT) in industry and its scalability and cost-effectiveness, particularly in ultra-large-scale systems, open source systems, and agile practices. I have already made progress in addressing a number of these concerns. Through my Ph.D. research, I focused on the use of MBT in embedded systems and improved its scalability in large industrial systems. In this program, I plan to further enhance MBT by focusing on the other concerns such as the lack of specification models and the cost-effectiveness of MBT in different contexts. The general idea is to use some recent and promising techniques from the field of Software Analytics. These techniques will analyze the large amount of data available about source control systems, defect tracking systems, requirement documents, performance datasets, execution logs, mailing lists, and even social media to provide recommendations to the MBT testers. I aim to develop a semi-automated model generation technique, Model Recommendation System, that will help the testers build specification models, reducing the build costs and potentially increasing the availability of specification models in the industry. Two other techniques that will be developed to enhance MBT are a Risk-aware MBT and an Adaptive MBT. Risk-aware MBT will allocate testing resources to the more risky usage scenarios, which are where the greater problems can be expected; and Adaptive MBT will control the quality of MBT over time and during the evolutions of the software systems. The proposed techniques will be empirically evaluated on large software systems and compared against existing software test automation techniques. This research will enhance both research and practice of software testing and impact the software industry by providing a means to improve the quality of their products and services. Since software testing is one of the most commonly used techniques in almost every software development processes, Canadian software communities in many sectors, such as IT, finance, defense, oil and gas, etc., will be well positioned to benefit from the outcomes of this research, through decreased personnel costs and increased software quality leading to enhanced competitiveness internationally.
软件正被纳入越来越多的使命和安全关键系统中,包括实时嵌入式系统(例如,巡航控制和空中交通控制系统),通信平台(例如,BlackBerry和Rogers无线网络),电子银行基础设施(例如,Interac和Visa)、电子商务系统(例如,eBay拍卖系统和Amazon弹性计算云),以及未来的电子医疗保健网络(例如,加拿大卫生信息系统)。这些系统为我们的社会提供了中心和关键的服务,因此需要高质量的软件。然而,历史上充满了软件故障,这些故障导致了许多问题,例如:飞机坠毁,病人死于错误的药物治疗,以及关键的金融系统崩溃。我的研究方向是提高软件质量。 我的课程侧重于软件测试,作为软件行业中最常用的质量保证方法。最近的研究表明,系统的测试自动化潜在地增加了测试的有效性,并降低了其成本。因此,我将针对研究最多的系统测试自动化技术之一,基于模型的测试(MBT),它自动生成测试从规格模型的系统。我的计划的目标是增强MBT,使其成为行业中常用的测试自动化技术。 有许多障碍使这一目标成为一个挑战,包括缺乏规范模型(MBT的输入)在行业中及其可扩展性和成本效益,特别是在超大规模系统,开源系统和敏捷实践。我已经在处理其中一些关切方面取得了进展。通过我的博士学位研究中,我专注于MBT在嵌入式系统中的使用,并提高了其在大型工业系统中的可扩展性。 在这个项目中,我计划通过关注其他问题,如缺乏规范模型和MBT在不同背景下的成本效益,进一步提高MBT。总体思路是使用软件分析领域的一些最新和有前途的技术。这些技术将分析有关源代码控制系统、缺陷跟踪系统、需求文档、性能数据集、执行日志、邮件列表甚至社交媒体的大量可用数据,为MBT测试人员提供建议。 我的目标是开发一个半自动化的模型生成技术,模型推荐系统,这将有助于测试人员建立规范模型,降低构建成本,并有可能增加规范模型在行业中的可用性。另外两种将被开发以增强MBT的技术是风险感知MBT和自适应MBT。风险感知MBT将测试资源分配给风险更大的使用场景,这是可以预期的更大的问题;自适应MBT将随着时间的推移和软件系统的演变过程中控制MBT的质量。 所提出的技术将在大型软件系统上进行经验评估,并与现有的软件测试自动化技术进行比较。这项研究将加强软件测试的研究和实践,并通过提供一种提高产品和服务质量的方法来影响软件行业。由于软件测试是几乎每个软件开发过程中最常用的技术之一,加拿大软件社区在许多部门,如IT,金融,国防,石油和天然气等,通过降低人力成本和提高软件质量,提高国际竞争力,将能够从这项研究的成果中受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hemmati, Hadi其他文献

A domain adaptation benchmark for T1-weighted brain magnetic resonance image segmentation.
  • DOI:
    10.3389/fninf.2022.919779
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Saat, Parisa;Nogovitsyn, Nikita;Hassan, Muhammad Yusuf;Ganaie, Muhammad Athar;Souza, Roberto;Hemmati, Hadi
  • 通讯作者:
    Hemmati, Hadi
Modeling robustness behavior using aspect-oriented modeling to support robustness testing of industrial systems
  • DOI:
    10.1007/s10270-011-0206-z
  • 发表时间:
    2012-10-01
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Ali, Shaukat;Briand, Lionel C.;Hemmati, Hadi
  • 通讯作者:
    Hemmati, Hadi

Hemmati, Hadi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hemmati, Hadi', 18)}}的其他基金

Program Behavior Representation Learning for Software Testing
软件测试的程序行为表示学习
  • 批准号:
    RGPIN-2020-04552
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
TrustBuilder.AI: fast, robust, and explainable deep learning
TrustBuilder.AI:快速、稳健且可解释的深度学习
  • 批准号:
    568643-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Program Behavior Representation Learning for Software Testing
软件测试的程序行为表示学习
  • 批准号:
    RGPIN-2020-04552
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
A robust AI-based automated trading system
强大的基于人工智能的自动交易系统
  • 批准号:
    556396-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
A robust AI-based automated trading system
强大的基于人工智能的自动交易系统
  • 批准号:
    556396-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Program Behavior Representation Learning for Software Testing
软件测试的程序行为表示学习
  • 批准号:
    RGPIN-2020-04552
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Automated testing and specification mining for certification of avionics software systems
用于航空电子软件系统认证的自动化测试和规范挖掘
  • 批准号:
    515254-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Enhancing Model-based Testing using Software Analytics
使用软件分析增强基于模型的测试
  • 批准号:
    RGPIN-2014-05108
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Testing Deep Neural Network Programs
测试深度神经网络程序
  • 批准号:
    542649-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Enhancing Model-based Testing using Software Analytics
使用软件分析增强基于模型的测试
  • 批准号:
    RGPIN-2014-05108
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
  • 批准号:
    81503449
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
  • 批准号:
    30873339
  • 批准年份:
    2008
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Enhancing Undergraduate Cybersecurity Education using a Mission-Based Learning Model
使用基于任务的学习模型加强本科网络安全教育
  • 批准号:
    2142622
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Enhancing teacher agency with technology: Creating an ecological model through a place-based study of teaching and learning
利用技术增强教师能动性:通过基于地点的教学研究创建生态模型
  • 批准号:
    ES/X002470/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
T1DTechCHW: Enhancing the Community Health Worker (CHW) Model to Promote Diabetes Technology Use in Young Adults from Underrepresented Minority Groups (YA-URMs) with Type 1 Diabetes (T1D)
T1DTechCHW:加强社区卫生工作者 (CHW) 模式,促进患有 1 型糖尿病 (T1D) 的弱势少数群体 (YA-URM) 年轻人使用糖尿病技术
  • 批准号:
    10596642
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
Enhancing Model-based Testing using Software Analytics
使用软件分析增强基于模型的测试
  • 批准号:
    RGPIN-2014-05108
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding and Enhancing Proprioception via Model-Based Human-Robot Interactions
通过基于模型的人机交互理解和增强本体感觉
  • 批准号:
    1934650
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
AR Git: An AR-based version control system for enhancing traceability in a 3D model creation process
AR Git:基于 AR 的版本控制系统,用于增强 3D 模型创建过程中的可追溯性
  • 批准号:
    540895-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    University Undergraduate Student Research Awards
Enhancing Model-based Testing using Software Analytics
使用软件分析增强基于模型的测试
  • 批准号:
    RGPIN-2014-05108
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing Hydraulic Fracturing Productivity via Model-based Feedback Control
通过基于模型的反馈控制提高水力压裂生产率
  • 批准号:
    1804407
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Enhancing Model-based Testing using Software Analytics
使用软件分析增强基于模型的测试
  • 批准号:
    RGPIN-2014-05108
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing the Broader Impacts of Developing a Social-Cognitive, Multilevel, Empirically-Based Model of Public Engagement for the Shaping of Science and Innovation Policy
增强开发社会认知、多层次、基于经验的公众参与模型的更广泛影响,以制定科学和创新政策
  • 批准号:
    1623805
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了