Nonlinear Wave Resonances in Continuous Media
连续介质中的非线性波谐振
基本信息
- 批准号:RGPIN-2014-05401
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Resonances are a fundamental aspect of physical phenomena in settings ranging from fluid mechanics to acoustics to optics. They are generally characterized by a constructive interaction between external forcing and natural internal frequencies. While the immediate mechanism is well understood, the long term effects of such interactions can be quite varied and depend on a multitude of factors. A robust literature has emerged over recent decades to model and investigate resonant phenomena, but numerous fundamental questions remain. Given the distinct mathematical features which arise when dispersive effects are present, this proposal has two primary and parallel themes, one where dispersive effects are present (e.g. nonlinear sloshing) and one where they are not (e.g. acoustic resonators).
The focus of this proposal will be on resonances in gas and fluid settings as these represent both tractable and broadly applicable regimes. For the non-dispersive case, based on the conservation principles embodied by the Euler Equations for inviscid flow, various systems will be modelled and studied. Of primary interest will be how the qualitative nature of the long term response depends on the underlying geometric and material (density) profiles. It is well known that in some cases (e.g. shock tubes) a discontinuous response arises, while in other cases (e.g. spherical resonators) the profile, while amplified, remains continuous. The nature of the transition between these cases is not well understood. A key objective of the present proposal will be to address this fundamental question by studying and characterising the transition regime linking them. This will involve detailed analysis of the solution structure and asymptotic scalings, leading to further insights into the underlying mechanisms. Given that each regime requires a distinct mathematical treatment, this will also involve development and extension of asymptotic techniques in order to establish this connection. Once these fundamental questions are resolved, the models will be extended to include additional effects such as control and combustion, with immediate application to design strategies in various industrial settings such as engines, pumps and compressors.
On the dispersive side, the primary focus of the present proposal will be on nonlinear sloshing of shallow fluids. Prior work and subsequent generalizations provided an asymptotic framework for the steady state periodic response in the limit that dispersive effects are small. However experiments have shown that while one-dimensional effects do persist in two and three dimensional settings, there are significant limitations. Therefore the first objective of the present study will be to extend the previous results to higher dimensions with a view towards understanding of resonant response in more general geometric settings. This in turn will involve further refinement of the layer based asymptotic methodology with particular attention to the underlying bifurcation structure and potential break-down near bifurcation points. Based on these fundamental investigations, the final objective will be to extend this work to allow for more generalized pitching and surging motions, with important applications, for example, to the design and operation of cargo vessels and tankers.
Both the dispersive and non-dispersive aspects will involve a blend of modelling, analysis and numerical simulation. They will afford and necessitate abundant opportunity for student involvement ranging from senior undergraduate to doctoral and postdoctoral levels. They will also not only provide fundamental insights into the underlying resonant mechanisms and outcomes, but also the opportunity for direct application in an array of industrial settings.
共振是物理现象的一个基本方面,从流体力学到声学再到光学。它们通常以外部强迫和内部固有频率之间的建设性相互作用为特征。虽然直接的机制很好理解,但这种相互作用的长期影响可能是多种多样的,并取决于多种因素。近几十年来出现了大量的文献来模拟和研究共振现象,但仍然存在许多基本问题。考虑到色散效应存在时出现的独特数学特征,本提案有两个主要和平行的主题,一个是色散效应存在的地方(例如非线性晃动),另一个是不存在的地方(例如声学谐振器)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amundsen, David其他文献
Amundsen, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amundsen, David', 18)}}的其他基金
Nonlinear Wave Resonances in Bounded Media
有界介质中的非线性波共振
- 批准号:
RGPIN-2019-06169 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Wave Resonances in Bounded Media
有界介质中的非线性波共振
- 批准号:
RGPIN-2019-06169 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Wave Resonances in Bounded Media
有界介质中的非线性波共振
- 批准号:
RGPIN-2019-06169 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Wave Resonances in Bounded Media
有界介质中的非线性波共振
- 批准号:
RGPIN-2019-06169 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Wave Resonances in Continuous Media
连续介质中的非线性波谐振
- 批准号:
RGPIN-2014-05401 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Wave Resonances in Continuous Media
连续介质中的非线性波谐振
- 批准号:
RGPIN-2014-05401 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Wave Resonances in Continuous Media
连续介质中的非线性波谐振
- 批准号:
RGPIN-2014-05401 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Wave Resonances in Continuous Media
连续介质中的非线性波谐振
- 批准号:
RGPIN-2014-05401 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic and qualitive analysis of nonlinear partial differential equations
非线性偏微分方程的渐近和定性分析
- 批准号:
249732-2008 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic and qualitive analysis of nonlinear partial differential equations
非线性偏微分方程的渐近和定性分析
- 批准号:
249732-2008 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
WASP家族蛋白WAVE2调节T细胞静息和活化的机制研究
- 批准号:32300748
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
四阶奇异摄动Bi-wave问题各向异性网格有限元方法一致收敛性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细胞骨架调节蛋白WAVE2维护免疫耐受及抑制自身免疫的机制研究
- 批准号:32270940
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
WAVE1/KMT2A甲基化作用调控上皮性卵巢癌增殖转移的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
WAVE1 调控脓毒症免疫代谢反应的分子机制
- 批准号:2021JJ31110
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
利用光学系统研究空间Rogue Wave的控制和预测
- 批准号:12004282
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
WASp家族Verprolin同源蛋白WAVE2调节T细胞免疫稳态和抗原特异性免疫应答的机制研究
- 批准号:31970841
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
复微分方程的亚纯解和偏微分方程的rogue wave解
- 批准号:11701382
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
植物SCAR/WAVE复合体与线粒体协同调节的自噬机制及其对柑橘果实品质的影响
- 批准号:31772281
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
WAVE2调控SATB1促进Tfh细胞分化在系统性红斑狼疮发病机制中的研究
- 批准号:81673058
- 批准年份:2016
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Nonlinear Wave Resonances in Bounded Media
有界介质中的非线性波共振
- 批准号:
RGPIN-2019-06169 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Wave Resonances in Bounded Media
有界介质中的非线性波共振
- 批准号:
RGPIN-2019-06169 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Unified Framework for the Study of Alfven Wave Resonances, Magnetic Reconnection and Kelvin-Helmholtz Instabilities
阿尔文波共振、磁重联和开尔文-亥姆霍兹不稳定性研究的统一框架
- 批准号:
2108320 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
Nonlinear Wave Resonances in Bounded Media
有界介质中的非线性波共振
- 批准号:
RGPIN-2019-06169 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Wave Resonances in Bounded Media
有界介质中的非线性波共振
- 批准号:
RGPIN-2019-06169 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Wave Resonances in Continuous Media
连续介质中的非线性波谐振
- 批准号:
RGPIN-2014-05401 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Wave Resonances in Continuous Media
连续介质中的非线性波谐振
- 批准号:
RGPIN-2014-05401 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Studying molecular structure of hadron resonances from wave function and compositeness
从波函数和复合性研究强子共振的分子结构
- 批准号:
15K17649 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Nonlinear Wave Resonances in Continuous Media
连续介质中的非线性波谐振
- 批准号:
RGPIN-2014-05401 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Wave Resonances in Continuous Media
连续介质中的非线性波谐振
- 批准号:
RGPIN-2014-05401 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




