Nanoscale Excitonics: From Materials Chemistry to Ultrafast Photonics
纳米激子学:从材料化学到超快光子学
基本信息
- 批准号:RGPIN-2014-05731
- 负责人:
- 金额:$ 3.13万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The electronic devices that have transformed our lives all consume energy. These devices are placing great demands upon our ability to generate the electrical power needed to maintain operation. Hence it is crucial to find solutions which either create new sources of energy or create greater energy efficiency. On the supply side, next generation photovoltaics enabled by nanoscience are one such example of the impact nanoscale materials can have. Quantum dot (QD) based solar cells are one such technology that has emerged from this field. The basic science of QD photovoltaics is built upon the basic science of the growth of these materials and the spectroscopic understanding of how their function arises from theis structure. On the demand sude, the poor efficiency of existing room light sources is now contributing to an emerging energy crisis. Solid state lighting using nanomaterials has been under intense investigation specifically for these reasons – energy efficiency, reliability, and device longevity. One of the most promising approaches to solid state lighting uses light emitting diodes using semiconductor quantum dots. But significant barriers remain, whether for photovoltaics, LEDs, lasers. We view this need and this challenge as an opportunity.
Semiconductor quantum dots (QD) have been under intense investigation in order to explore the basic science of quantum effects in nanoscale materials, as well as for their importance to a wide variety of applications such as solar cells, lasers, biological imaging and quantum information processing. Based upon the rich suite of nanostructures that may be fabricated, a powerful platform is now in hand for the development of a variety of novel devices that will have impact on lighting, displays, telecommunications, and our energy future. The way in which the materials science is connected to the device applications is the excitonics of these systems – the structure and dynamics of their excitons. My group explores the excitonics of semiconductor quantum dots using a variety of approaches, most notably femtosecond laser spectroscopy.
Here, I describe three current projects my group is embarking upon to explore and exploit excitons in nanostructures in order to produce insight into their function and to realize their value in a variety of device applications. These projects are unified under a common theme of excitonics in nanoscale materials: from materials to devices to advanced spectroscopy. In this proposal we will accomplish the following: 1) We will explore the excitonics of semiconductor nanocrystals using our excitonic state-resolved pump/probe spectroscopy developed in our earlier NSERC Discovery cycles. 2) We will establish the first clear microscopic view of the surface of colloidal quantum dots. Based upon this understanding, we will utilize chemical functionalization of the surface of quantum dots to engineer the wavefunctions for applications including energy efficient white light emission as well as sensing. 3) We will develop a simple and powerful approach to coherent multidimensional spectroscopy using a novel dual pulse shaper scheme. This spectroscopy development project will result in a uniquely powerful approach to exploring the structure and dynamics of excitons in nanosystems. It will moreover enable opportunities for commercialization of this technology.
改变了我们生活的电子设备都消耗了能量。这些设备对我们产生维护运行所需的电力的能力提出了很大的要求。因此,找到创造新能源或创造更大能源效率的解决方案至关重要。在供应方面,纳米科学启用了下一代光伏,就是纳米级材料所产生的影响的一个例子。基于量子点(QD)的太阳能电池是从该领域出现的这样的技术。 QD光伏的基础科学建立在这些材料生长的基础科学基础上,以及对其功能如何源于结构产生的光谱理解。在需求sude上,现有房间光源的效率较差,现在造成了新兴的能源危机。出于这些原因,使用纳米材料的固态照明正在经过深入的研究 - 能源效率,可靠性和设备寿命。固态照明的最有前途的方法之一使用半导体量子点使用光排放。但是,无论是光伏,LED,激光,仍然存在重大障碍。我们将这种需求和这一挑战视为机会。
半导体量子点(QD)一直受到激烈的投资,以探索纳米级材料中量子效应的基本科学,以及它们对诸如太阳能电池,激光器,生物成像和量子信息处理等各种应用的重要性。基于可能被捏造的纳米结构的丰富套件,现在有一个强大的平台可以开发各种新型设备,这些设备将对照明,显示器,电信和我们的能量未来产生影响。材料科学连接到设备应用的方式是这些系统的激发图 - 其激子的结构和动力学。我的小组使用多种方法(最著名的是飞秒激光光谱法)探索了半导体量子点的激素。
在这里,我描述了我的小组正在启动探索和利用纳米结构中的激子,以便深入了解其功能并实现其在各种设备应用程序中的价值。这些项目以纳米级材料中激素的共同主题统一:从材料到设备再到高级光谱法。在此提案中,我们将完成以下操作:1)我们将使用我们早期的Nserc Discovery Cycles中开发的令人兴奋的状态分辨泵/探针光谱探索半导体纳米晶体的激素。 2)我们将建立胶体量子点表面表面的第一个清晰的微观视图。基于这种理解,我们将利用量子点表面的化学官能化来设计波形的应用,以用于包括节能白光发射和灵敏度在内的应用。 3)我们将使用一种新型的双脉冲塑形方案开发一种简单而强大的方法来相干多维光谱。该光谱开发项目将导致一种独特的强大方法来探索纳米系统中激子的结构和动态。此外,这将为这项技术的商业化提供机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kambhampati, Patanjali其他文献
A microscopic picture of surface charge trapping in semiconductor nanocrystals
- DOI:
10.1063/1.4807054 - 发表时间:
2013-05-28 - 期刊:
- 影响因子:4.4
- 作者:
Mooney, Jonathan;Krause, Michael M.;Kambhampati, Patanjali - 通讯作者:
Kambhampati, Patanjali
Breaking the phonon bottleneck for holes in semiconductor quantum dots
- DOI:
10.1103/physrevlett.98.177403 - 发表时间:
2007-04-27 - 期刊:
- 影响因子:8.6
- 作者:
Cooney, Ryan R.;Sewall, Samuel L.;Kambhampati, Patanjali - 通讯作者:
Kambhampati, Patanjali
Hot Exciton Relaxation Dynamics in Semiconductor Quantum Dots: Radiationless Transitions on the Nanoscale
- DOI:
10.1021/jp2058673 - 发表时间:
2011-11-17 - 期刊:
- 影响因子:3.7
- 作者:
Kambhampati, Patanjali - 通讯作者:
Kambhampati, Patanjali
Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra
- DOI:
10.1021/jz401508t - 发表时间:
2013-10-03 - 期刊:
- 影响因子:5.7
- 作者:
Mooney, Jonathan;Kambhampati, Patanjali - 通讯作者:
Kambhampati, Patanjali
State-resolved studies of biexcitons and surface trapping dynamics in semiconductor quantum dots
- DOI:
10.1063/1.2971181 - 发表时间:
2008-08-28 - 期刊:
- 影响因子:4.4
- 作者:
Sewall, Samuel L.;Cooney, Ryan R.;Kambhampati, Patanjali - 通讯作者:
Kambhampati, Patanjali
Kambhampati, Patanjali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kambhampati, Patanjali', 18)}}的其他基金
A Spectroscopic Journey through Time and Space in Complex Electronic Materials
复杂电子材料中穿越时空的光谱之旅
- 批准号:
RGPIN-2019-05922 - 财政年份:2022
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Proposal to resurrect femtosecond laser labs for probing electronic materials
复兴飞秒激光实验室以探测电子材料的提案
- 批准号:
RTI-2023-00018 - 财政年份:2022
- 资助金额:
$ 3.13万 - 项目类别:
Research Tools and Instruments
A Spectroscopic Journey through Time and Space in Complex Electronic Materials
复杂电子材料中穿越时空的光谱之旅
- 批准号:
RGPIN-2019-05922 - 财政年份:2021
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
A Spectroscopic Journey through Time and Space in Complex Electronic Materials
复杂电子材料中穿越时空的光谱之旅
- 批准号:
RGPIN-2019-05922 - 财政年份:2020
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
A simple fiber based light source for femtosecond laser spectroscopy
用于飞秒激光光谱的简单光纤光源
- 批准号:
545152-2019 - 财政年份:2019
- 资助金额:
$ 3.13万 - 项目类别:
Idea to Innovation
A Spectroscopic Journey through Time and Space in Complex Electronic Materials
复杂电子材料中穿越时空的光谱之旅
- 批准号:
RGPIN-2019-05922 - 财政年份:2019
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Development of white light emitting diodes using designer nanocrystalline emitters
使用设计纳米晶发射器开发白光发光二极管
- 批准号:
530545-2018 - 财政年份:2018
- 资助金额:
$ 3.13万 - 项目类别:
Collaborative Research and Development Grants
Nanoscale Excitonics: From Materials Chemistry to Ultrafast Photonics
纳米激子学:从材料化学到超快光子学
- 批准号:
RGPIN-2014-05731 - 财政年份:2018
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Nanoscale Excitonics: From Materials Chemistry to Ultrafast Photonics
纳米激子学:从材料化学到超快光子学
- 批准号:
RGPIN-2014-05731 - 财政年份:2017
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Tools to complete Coherent Multidimesional Ultrafast Spectrometer
完成相干多维超快光谱仪的工具
- 批准号:
RTI-2016-00108 - 财政年份:2015
- 资助金额:
$ 3.13万 - 项目类别:
Research Tools and Instruments
相似国自然基金
超痕量内源植物多肽激素分析鉴定技术的建立及在植物学中的应用
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
激素敏感癌症的演化标志物发现:知识引导的生物信息学模型
- 批准号:32270690
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
光遗传学及去势调控促性腺激素释放激素(GnRH)脉冲频率延缓衰老延长寿命及机制研究
- 批准号:82271629
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
超痕量内源植物多肽激素分析鉴定技术的建立及在植物学中的应用
- 批准号:32270427
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
基于转录组学和人工智能的脓毒症激素精准化治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Creation of Stimuli-Responsive Properties of Flexible HOFs
柔性 HOF 的刺激响应特性的创建
- 批准号:
22KF0191 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of Single-Crystalline Porous Frameworks of Pi-Conjugated Molecules Connected though Simple Hydrogen Bonds
通过简单氢键连接的π共轭分子单晶多孔框架的开发
- 批准号:
18H01966 - 财政年份:2018
- 资助金额:
$ 3.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nanoscale Excitonics: From Materials Chemistry to Ultrafast Photonics
纳米激子学:从材料化学到超快光子学
- 批准号:
RGPIN-2014-05731 - 财政年份:2018
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Creation of multi-functional soft materials by introducing plural interaction units
通过引入多个相互作用单元创建多功能软材料
- 批准号:
17H03416 - 财政年份:2017
- 资助金额:
$ 3.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nanoscale Excitonics: From Materials Chemistry to Ultrafast Photonics
纳米激子学:从材料化学到超快光子学
- 批准号:
RGPIN-2014-05731 - 财政年份:2017
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual