The role of nitric oxide signaling in synaptic plasticity

一氧化氮信号传导在突触可塑性中的作用

基本信息

  • 批准号:
    RGPIN-2014-06085
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Learning and memory has at its core modifications to tiny spine like structures that exist on a special subset of neurons in the brain known as “spiny neurons.” These spines must move, adapt, grow and retract in response to chemical neurotransmitters in the brain, a process that as a whole is believed to be the cellular manifestation of learning, known as synaptic plasticity. The spines themselves are thought to serve as basic units of memory storage. While much work has focused directly on the chemical signals that mediate communication in the brain and the ion channels that are opened as a result, little is know of the specific signaling pathways that control the actual generation, shape and loss of individual spines. This proposal aims to shed light on this process by focusing on a specific molecule (Nitric Oxide) that is produced in these spines following ion channel opening. Nitric Oxide is unique in that it can directly alter the proteins responsible for dynamic changes to spine morphology. This proposal is driven by the hypothesis that Nitric Oxide signaling regulates synaptic plasticity by altering the density and morphology of spines through a process called S-nitrosylation. Ion channels link a cell with the environment that surrounds it. These channels allow the cell to interpret its surroundings by responding to neurotransmitters and propagating signals from the environment outside of the cell inward. These signals mediate changes in the structure and shape of the cell itself and facilitate spine growth and retraction. One class of ion channel of interest to this proposal is characterized by its ability to respond to a neurotransmitter called glutamate. Glutamate signaling can increase the efficiency of communication between cells in the brain by both increasing the number and stability of new spines as well by pruning excess or unnecessary spines, leaving a more efficient communication network. Glutamate-mediated opening of the “NMDA” type ion channel results in production of Nitric Oxide that modifies the proteins in spines through a chemical reaction called S-Nitrosylation. This event alters the function of near-by proteins and as a result the dynamic properties of the spines they inhabit. While it is estimated that 50% of proteins in the brain are altered by S-nitrosylation, a comprehensive analysis of the role it plays in synaptic plasticity has never been performed. Using powerful mouse genetics we will control the level of Nitric Oxide synthesized in spines by altering the genetic composition of the NMDA-type ion channel and thus its ability to open and close. Using live imaging microscopy techniques coupled with fluorescent probes, we will monitor the flux of ions through NMDA-type channels as well the amount Nitric Oxide subsequently produced in cultured brain slices and isolated neurons from these mice. This will allow us to determine how the level of Nitric Oxide correlates with dynamic changes to spine morphology. We will then monitor what proteins are S-nitrosylated by Nitric Oxide under conditions of spine growth, spine stabilization and spine retraction using Mass Spectrometry to analyze changes to proteins composition. This will form the basis of a novel molecular pathway that underlies the processes of synaptic plasticity. Moreover, this research program will further our understanding neural architecture and the means by which cells of the brain communicate.
学习和记忆的核心是对微小的脊椎状结构的修改,这些结构存在于大脑中一种特殊的神经元子集上,称为“棘神经元”。这些脊椎必须移动、适应、生长和收缩,以响应大脑中的化学神经递质,这个过程被认为是学习的细胞表现,被称为突触可塑性。脊椎本身被认为是记忆存储的基本单位。虽然很多研究都直接集中在化学信号和离子通道上,这些化学信号在大脑中起中介作用,从而打开了离子通道,但对控制单个脊椎的实际产生、形状和损失的具体信号通路却知之甚少。这项提议旨在通过关注离子通道开放后在这些脊椎中产生的一种特定分子(一氧化氮)来阐明这一过程。一氧化氮的独特之处在于,它可以直接改变导致脊柱形态动态变化的蛋白质。这一假设是基于这样一个假设,即一氧化氮信号通过一种名为S-亚硝化的过程改变脊椎的密度和形态,从而调节突触的可塑性。 离子通道将细胞与其周围的环境联系起来。这些通道允许细胞通过对神经递质的反应来解释其周围环境,并将来自细胞外环境的信号向内传播。这些信号调节细胞本身的结构和形状的变化,并促进脊柱的生长和回缩。对这一提议感兴趣的一类离子通道的特征是它对一种名为谷氨酸的神经递质做出反应的能力。谷氨酸信号可以通过增加新脊椎的数量和稳定性,以及通过修剪多余或不必要的脊椎,从而提高大脑细胞之间的沟通效率,留下更有效的沟通网络。谷氨酸介导的“N-甲基-D-天冬氨酸”型离子通道的开放导致一氧化氮的产生,一氧化氮通过称为S-亚硝化的化学反应改变脊柱中的蛋白质。这一事件改变了邻近蛋白质的功能,从而改变了它们所栖息的脊椎的动态特性。虽然据估计,大脑中50%的蛋白质会被S-亚硝化改变,但对其在突触可塑性中所起作用的全面分析从未进行过。 利用强大的小鼠遗传学,我们将通过改变NMDA型离子通道的遗传组成,从而改变其打开和关闭的能力,来控制脊柱中合成的一氧化氮的水平。使用结合荧光探针的实时成像显微镜技术,我们将监测通过NMDA型通道的离子流量,以及随后在培养的脑片和这些小鼠的分离神经元中产生的一氧化氮的量。这将使我们能够确定一氧化氮水平如何与脊柱形态的动态变化相关。然后,我们将监测在脊柱生长、脊柱稳定和脊柱回缩条件下,哪些蛋白质被一氧化氮亚硝化,并用质谱仪分析蛋白质组成的变化。这将形成一种新的分子途径的基础,该途径是突触可塑性的基础。此外,这项研究计划将进一步加深我们对神经结构和脑细胞交流方式的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan, Scott其他文献

The Experiences of Gay Men and Lesbians in Becoming and Being Adoptive Parents
  • DOI:
    10.1080/10926750903313294
  • 发表时间:
    2009-01-01
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Brown, Suzanne;Smalling, Susan;Ryan, Scott
  • 通讯作者:
    Ryan, Scott
An Evaluation of Gay/Lesbian and Heterosexual Adoption
  • DOI:
    10.1080/10926750903313278
  • 发表时间:
    2009-01-01
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Averett, Paige;Nalavany, Blace;Ryan, Scott
  • 通讯作者:
    Ryan, Scott

Ryan, Scott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan, Scott', 18)}}的其他基金

Cysteine oxidation in the remodelling of dendritic spines
树突棘重塑中的半胱氨酸氧化
  • 批准号:
    RGPIN-2021-02418
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Cysteine oxidation in the remodelling of dendritic spines
树突棘重塑中的半胱氨酸氧化
  • 批准号:
    RGPIN-2021-02418
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Fast protein liquid chromatography (FPLC) based ultra-pure protein preperations for the study of structural biology
基于快速蛋白质液相色谱 (FPLC) 的超纯蛋白质制剂,用于结构生物学研究
  • 批准号:
    RTI-2022-00047
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Research Tools and Instruments
A ratiometric imaging platform to advance COVID-19 counter measures
用于推进 COVID-19 应对措施的比例成像平台
  • 批准号:
    552990-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Alliance Grants
The role of nitric oxide signaling in synaptic plasticity
一氧化氮信号传导在突触可塑性中的作用
  • 批准号:
    RGPIN-2014-06085
  • 财政年份:
    2019
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Dietary omega-3 (n-3) and omega-6 (n-6) fatty acids as novels activators of the anti-oxidant response
膳食 omega-3 (n-3) 和 omega-6 (n-6) 脂肪酸作为抗氧化反应的新型激活剂
  • 批准号:
    490841-2015
  • 财政年份:
    2019
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Collaborative Research and Development Grants
The role of nitric oxide signaling in synaptic plasticity
一氧化氮信号传导在突触可塑性中的作用
  • 批准号:
    RGPIN-2014-06085
  • 财政年份:
    2018
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Dietary omega-3 (n-3) and omega-6 (n-6) fatty acids as novels activators of the anti-oxidant response
膳食 omega-3 (n-3) 和 omega-6 (n-6) 脂肪酸作为抗氧化反应的新型激活剂
  • 批准号:
    490841-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Collaborative Research and Development Grants
The role of nitric oxide signaling in synaptic plasticity
一氧化氮信号传导在突触可塑性中的作用
  • 批准号:
    RGPIN-2014-06085
  • 财政年份:
    2017
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Dietary omega-3 (n-3) and omega-6 (n-6) fatty acids as novels activators of the anti-oxidant response
膳食 omega-3 (n-3) 和 omega-6 (n-6) 脂肪酸作为抗氧化反应的新型激活剂
  • 批准号:
    490841-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

TRPCs,STIMs及Orais在钙敏感受体介导钙内流及一氧化氮生成中作用和机制研究
  • 批准号:
    31160239
  • 批准年份:
    2011
  • 资助金额:
    53.47 万元
  • 项目类别:
    地区科学基金项目
一氧化氮在猪卵母细胞发生过程中的调节作用及机制
  • 批准号:
    30600432
  • 批准年份:
    2006
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
  • 批准号:
    10604822
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
Diversity Supplement to Microvascular mechanisms of growth restriction after environmental toxicant exposure (R01ES031285)
环境毒物暴露后生长受限的微血管机制的多样性补充(R01ES031285)
  • 批准号:
    10849145
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
Effects of Arginine Depletion Combined with Platinum-Taxane Chemotherapy in Aggressive Variant Prostate Cancers (AVPC)
精氨酸消耗联合铂类紫杉烷化疗对侵袭性变异前列腺癌 (AVPC) 的影响
  • 批准号:
    10715329
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
Nitrosative stress and NO detoxifying reaction mechanisms in microbial nonheme diiron proteins
微生物非血红素二铁蛋白的亚硝化应激和NO解毒反应机制
  • 批准号:
    10656107
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
Using Photobiomodulation to Alleviate Brain Hypoperfusion in Alzheimer's Disease
利用光生物调节缓解阿尔茨海默氏病的大脑灌注不足
  • 批准号:
    10656787
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
ECHO Renewal for the INSPIRE Study Cohort
INSPIRE 研究队列的 ECHO 更新
  • 批准号:
    10745075
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
The Role of Thromboxane A2 in Vascular Regulation in Women with Endometriosis
血栓素 A2 在子宫内膜异位症女性血管调节中的作用
  • 批准号:
    10750782
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
Mitochondria-targeted antioxidant supplementation for improving age-related vascular dysfunction in older adults: the role of circulating factors
线粒体靶向抗氧化剂补充剂可改善老年人与年龄相关的血管功能障碍:循环因子的作用
  • 批准号:
    10606926
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
Post-translational Modification of Cx43 Regulates Myometrial Quiescence
Cx43 的翻译后修饰调节子宫肌层静止
  • 批准号:
    10575364
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
Cerebrovascular endothelial cilia in the pathogenesis and therapy of Alzheimer's disease
脑血管内皮纤毛在阿尔茨海默病发病机制和治疗中的作用
  • 批准号:
    10575082
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了