Geometry and Combinatorics of Rigidity Theory and its Applications
刚度理论的几何与组合学及其应用
基本信息
- 批准号:RGPIN-2015-04624
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We live in 3D and we design and build in 3D. The constraints on the structure of the successful designs, and the analysis of the failures of designs, involve 3D geometry in its various forms, as well as its simplified form as combinatorics: counting the parts, counting the numbers and patterns of connections among the parts. Mathematicians find novel ways to assemble components, and to analyze the way nature has assembled the parts. Such structures then raise a number of questions that we work on.
Across many fields of Engineering and Science the same core questions arise about the range of realizations of structures satisfying a set of conditions or constraints. Sometimes there are no structures with these values. Sometimes there is just one (global uniqueness). Sometimes there are several realizations, but they are locally unique (rigid). Sometimes there is a continuous path of realizations (the structure is flexible).
The methods being refined in this project address all of these variations of rigidity, both in the plane and in 3-space. The ultimate goal is have a computer algorithm that is able to test a given set of values and structures for any of these properties, in a reasonable time. We have algorithms for some of these, some of which work almost all of the time – but there is room for failures of the ‘general’ algorithm due to special geometry of the patterns in a specific set of values. For example, the structure may have symmetry – because multiple identical copies of a substructure are being combined, either in built structures or in biological structures such as proteins and viruses. Identifying these ‘special positions’ is currently a focus of the research, as is working out the impact of those special positions on the positive functioning of biological structures and machines or buildings as well as the potential for failures both in built structures (such as buildings and bridges) and in biological interventions, such as drug design.
Core to this work are international collaborations which bring in multiple areas of mathematics, such as modern combinatorial geometry (matroid theory) and older areas such as projective geometry over multiple spaces (Euclidean, spherical) and into other more exotic areas (such as hyperbolic geometry) to refine our understanding of the basic structures and the structure of the constraint systems.
The project combines mathematical results with ongoing work with innovative practitioners in several field of engineering (mechanical and civil), computer science, including robotics, computer-aided design (CAD) and use of sensor networks, and several fields of science (material science and biochemistry). All of these interactions have the potential to inform professional practices, and improve the predictions of the behavior of the systems.
我们生活在3D中,我们在3D中设计和建造。对成功设计的结构的约束,以及对设计失败的分析,涉及各种形式的3D几何,以及其简化形式的组合学:计算部件,计算部件之间的连接的数量和模式。数学家找到了新的方法来组装组件,并分析自然界组装部件的方式。这样的结构提出了一些我们正在研究的问题。
在工程和科学的许多领域中,同样的核心问题出现在满足一组条件或约束的结构的实现范围上。有时候没有具有这些值的结构。有时只有一个(全局唯一性)。有时有几个实现,但它们是局部唯一的(刚性的)。有时有一个连续的实现路径(结构是灵活的)。
在这个项目中,正在改进的方法解决了所有这些刚度的变化,无论是在平面还是在三维空间。最终目标是有一个计算机算法,能够在合理的时间内测试给定的一组值和结构的任何这些属性。我们有算法,其中一些工作几乎所有的时间-但有空间的失败的“一般”算法,由于特殊的几何图案在一组特定的值。例如,结构可能具有对称性-因为子结构的多个相同副本正在组合,无论是在构建的结构中还是在生物结构(如蛋白质和病毒)中。确定这些“特殊位置”是目前研究的重点,因为这些特殊位置对生物结构和机器或建筑物的积极功能的影响,以及在建筑结构(如建筑物和桥梁)和生物干预(如药物设计)中失败的可能性。
这项工作的核心是国际合作,它带来了多个数学领域,如现代组合几何(拟阵理论)和更古老的领域,如多个空间上的射影几何(欧几里德,球面)和其他更奇异的领域(如双曲几何),以完善我们对基本结构和约束系统结构的理解。
该项目将数学成果与工程(机械和土木),计算机科学(包括机器人技术,计算机辅助设计(CAD)和传感器网络的使用)以及几个科学领域(材料科学和生物化学)的创新从业者正在进行的工作相结合。所有这些交互都有可能为专业实践提供信息,并改善对系统行为的预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Whiteley, Walter其他文献
RIGIDITY OF SPHERICAL FRAMEWORKS: SWAPPING BLOCKS AND HOLES
- DOI:
10.1137/090775701 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:0.8
- 作者:
Finbow, Wendy;Ross, Elissa;Whiteley, Walter - 通讯作者:
Whiteley, Walter
ISOSTATIC BLOCK AND HOLE FRAMEWORKS
- DOI:
10.1137/100801044 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:0.8
- 作者:
Finbow-Singh, Wendy;Whiteley, Walter - 通讯作者:
Whiteley, Walter
Whiteley, Walter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Whiteley, Walter', 18)}}的其他基金
Geometry and Combinatorics of Rigidity Theory and its Applications
刚度理论的几何与组合学及其应用
- 批准号:
RGPIN-2015-04624 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Geometry and Combinatorics of Rigidity Theory and its Applications
刚度理论的几何与组合学及其应用
- 批准号:
RGPIN-2015-04624 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Geometry and Combinatorics of Rigidity Theory and its Applications
刚度理论的几何与组合学及其应用
- 批准号:
RGPIN-2015-04624 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Geometry and Combinatorics of Rigidity Theory and its Applications
刚度理论的几何与组合学及其应用
- 批准号:
RGPIN-2015-04624 - 财政年份:2015
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Discrete applied geometry
离散应用几何
- 批准号:
147637-2010 - 财政年份:2014
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Discrete applied geometry
离散应用几何
- 批准号:
147637-2010 - 财政年份:2013
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Discrete applied geometry
离散应用几何
- 批准号:
147637-2010 - 财政年份:2012
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Discrete applied geometry
离散应用几何
- 批准号:
147637-2010 - 财政年份:2011
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Discrete applied geometry
离散应用几何
- 批准号:
147637-2010 - 财政年份:2010
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Geometric constraints in discrete applied geometry
离散应用几何中的几何约束
- 批准号:
147637-2005 - 财政年份:2009
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Research Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
- 批准号:
2401464 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
- 批准号:
2347850 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Continuing Grant
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
- 批准号:
2349015 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Conference: Additive Combinatorics 2024
会议:加性组合学 2024
- 批准号:
2418414 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Conference: Shanks Workshop on Combinatorics and Graph Theory
会议:尚克斯组合学和图论研讨会
- 批准号:
2415358 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
- 批准号:
2348525 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant