Myoelectric Control of Powered Upper Limb Prostheses
动力上肢假肢的肌电控制
基本信息
- 批准号:RGPIN-2015-05539
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The loss or congenital absence of a limb is a major disability that can have considerable physical and psychological impact on the life of an amputee. It is estimated that there are more than 3 million upper limb amputees globally, with the rate of incidence growing steadily. Better robotic prostheses can dramatically improve the quality of life for persons with an upper limb amputation, many of whom reject existing devices because they have trouble controlling them in the same intuitive, subconscious way that they controlled their intact arms.
Myoelectric prostheses use the electromyogram (EMG) signals (the electrical signals generated during muscle contraction) from residual limb muscles to control motorized arm joints. The use of EMG offers a non-invasive means of establishing a natural interface to the neuromuscular system to control the lost functions of the limb.
Although significant advances have been made in building lighter, stronger and more versatile prostheses over the last 20 years, little progress has been made in viable control of these prostheses. Individuals who have used myoelectric prostheses clearly indicate that it is the reliability and dexterity of control that is the most significant factor in acceptance of these devices.
The objective of this research is to deliver robust, dexterous control to myoelectric prostheses. Although the applicant, and others, have demonstrated great success in myoelectric control using pattern recognition and regression based methods in controlled laboratory settings, the ability to have these methods succeed in user's homes and work environments requires advances in robustness and dexterity that will translate into a meaningful improvement in user experience. This will be accomplished by introducing innovative modeling and signal processing paradigms, including novel methods in pattern recognition, adaptive learning, and nonlinear regression.
肢体的丧失或先天性缺失是一种严重的残疾,对截肢者的生活会产生相当大的生理和心理影响。据估计,全球上肢截肢者超过300万人,发病率稳步增长。更好的机器人假肢可以大大提高上肢截肢者的生活质量,他们中的许多人拒绝使用现有的设备,因为他们难以像控制完好的手臂那样直观、潜意识地控制它们。
肌电假肢使用来自残肢肌肉的肌电图(EMG)信号(肌肉收缩期间产生的电信号)来控制机动手臂关节。EMG的使用提供了一种建立神经肌肉系统的自然界面以控制肢体丧失的功能的非侵入性手段。
虽然在过去的20年里,在制造更轻、更强和更通用的假体方面取得了重大进展,但在这些假体的可行控制方面几乎没有取得进展。使用过肌电假肢的人清楚地表明,控制的可靠性和灵活性是接受这些设备的最重要因素。
本研究的目的是提供强大的,灵巧的控制肌电假肢。尽管申请人和其他人已经在受控实验室环境中使用基于模式识别和回归的方法在肌电控制中取得了巨大成功,但是使这些方法在用户的家庭和工作环境中成功的能力需要鲁棒性和灵活性的进步,这将转化为用户体验的有意义的改善。这将通过引入创新的建模和信号处理范例来实现,包括模式识别,自适应学习和非线性回归的新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Englehart, Kevin其他文献
Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use
- DOI:
10.1682/jrrd.2010.09.0177 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:0
- 作者:
Scheme, Erik;Englehart, Kevin - 通讯作者:
Englehart, Kevin
Regression convolutional neural network for improved simultaneous EMG control
- DOI:
10.1088/1741-2552/ab0e2e - 发表时间:
2019-06-01 - 期刊:
- 影响因子:4
- 作者:
Ameri, Ali;Akhaee, Mohammad Ali;Englehart, Kevin - 通讯作者:
Englehart, Kevin
A comparison of surface and intramuscular myoelectric signal classification
- DOI:
10.1109/tbme.2006.889192 - 发表时间:
2007-05-01 - 期刊:
- 影响因子:4.6
- 作者:
Hargrove, Levi J.;Englehart, Kevin;Hudgins, Bernard - 通讯作者:
Hudgins, Bernard
A Deep Transfer Learning Approach to Reducing the Effect of Electrode Shift in EMG Pattern Recognition-Based Control
- DOI:
10.1109/tnsre.2019.2962189 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:4.9
- 作者:
Ameri, Ali;Akhaee, Mohammad Ali;Englehart, Kevin - 通讯作者:
Englehart, Kevin
Motion Normalized Proportional Control for Improved Pattern Recognition-Based Myoelectric Control
- DOI:
10.1109/tnsre.2013.2247421 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:4.9
- 作者:
Scheme, Erik;Lock, Blair;Englehart, Kevin - 通讯作者:
Englehart, Kevin
Englehart, Kevin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Englehart, Kevin', 18)}}的其他基金
Novel Machine Learning Methods for Robust Myoelectric Control
用于鲁棒肌电控制的新型机器学习方法
- 批准号:
RGPIN-2021-02627 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Novel Machine Learning Methods for Robust Myoelectric Control
用于鲁棒肌电控制的新型机器学习方法
- 批准号:
RGPIN-2021-02627 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Myoelectric Control of Powered Upper Limb Prostheses
动力上肢假肢的肌电控制
- 批准号:
RGPIN-2015-05539 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Myoelectric Control of Powered Upper Limb Prostheses
动力上肢假肢的肌电控制
- 批准号:
RGPIN-2015-05539 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Myoelectric Control of Powered Upper Limb Prostheses
动力上肢假肢的肌电控制
- 批准号:
RGPIN-2015-05539 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Myoelectric Control of Powered Upper Limb Prostheses
动力上肢假肢的肌电控制
- 批准号:
RGPIN-2015-05539 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Myoelectric control of powered upper limb prostheses
动力上肢假肢的肌电控制
- 批准号:
217354-2010 - 财政年份:2014
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Myoelectric control of powered upper limb prostheses
动力上肢假肢的肌电控制
- 批准号:
217354-2010 - 财政年份:2013
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
An intelligent prosthetic socket utilizing novel pressure sensing methods
采用新型压力传感方法的智能假肢接受腔
- 批准号:
446560-2013 - 财政年份:2013
- 资助金额:
$ 2.19万 - 项目类别:
Engage Grants Program
Myoelectric control of powered upper limb prostheses
动力上肢假肢的肌电控制
- 批准号:
396111-2010 - 财政年份:2012
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
Myoelectric Control of Powered Upper Limb Prostheses
动力上肢假肢的肌电控制
- 批准号:
RGPIN-2015-05539 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Myoelectric Control of Powered Upper Limb Prostheses
动力上肢假肢的肌电控制
- 批准号:
RGPIN-2015-05539 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Myoelectric Control of Powered Upper Limb Prostheses
动力上肢假肢的肌电控制
- 批准号:
RGPIN-2015-05539 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Myoelectric Control of Powered Upper Limb Prostheses
动力上肢假肢的肌电控制
- 批准号:
RGPIN-2015-05539 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Myoelectric control of powered upper limb prostheses
动力上肢假肢的肌电控制
- 批准号:
217354-2010 - 财政年份:2014
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Myoelectric control of powered upper limb prostheses
动力上肢假肢的肌电控制
- 批准号:
217354-2010 - 财政年份:2013
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Myoelectric control of powered upper limb prostheses
动力上肢假肢的肌电控制
- 批准号:
396111-2010 - 财政年份:2012
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Myoelectric control of powered upper limb prostheses
动力上肢假肢的肌电控制
- 批准号:
217354-2010 - 财政年份:2012
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Myoelectric control of powered upper limb prostheses
动力上肢假肢的肌电控制
- 批准号:
396111-2010 - 财政年份:2011
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Myoelectric control of powered upper limb prostheses
动力上肢假肢的肌电控制
- 批准号:
217354-2010 - 财政年份:2011
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual