Numerical Computing on Evolving Domains
演化领域的数值计算
基本信息
- 批准号:RGPIN-2016-03757
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Partial differential equations (PDEs) are essential tools in science, engineering, and other fields. For example, PDEs are used as mathematical models for fluid flow, weather systems, stock markets, and chemical and biological processes. They are also used extensively in medical imaging, diagnosis, data processing, and computer vision. Because exact solutions are rarely available, practical progress is most often made through scientific computing: namely, the use of accurate and efficient numerical methods for computing approximate solutions.
In many realistic applications, the curved geometry of the domain of the problem plays a significant role: for example, one does not encounter many rectangular structures in biology. Often these curved and realistic domains are changing in time (again, think of biological growth). I propose assembling a team of students to build tools for scientific computing which solve these PDE problems on realistic dynamic and evolving domains. I want these methods to be simple from various points of view:
• mathematical elegance;
• efficiency and ease of implementation;
• extensible, for broad “end-user” applicability;
• understandable, reliable and verifiable, even by non-experts.
This will require fundamental advancements to the mathematics, numerical analysis and computational practice of dealing with geometry: indeed, the sort of advancements my previous students and I have been making for the past few years.
As mentioned above, the fundamental importance of PDEs over a broad spectrum of human endeavor means new algorithmic ideas can have a wide impact. When these tools are also easy-to-use and scale efficiently from “cartoon” test problems up to large-scale industrial applications, then both researchers and practitioners have the freedom to push their models and their science much further. However, to realize that impact outside of the direct community of people working on numerical methods, any new algorithms must first be used outside of that community. To encourage this to actually happen, I will:
• further expand my work directly into application areas in biology, materials science, engineering, image processing, and other areas.
• develop a software tool with a library of examples. This shifts the focus for adoption: instead of needing to read, understand and re-implement my research, anyone can choose and run a simple example and subsequently focus on understanding and how to extend it to her particular area.
• practice open and reproducible research. For example, all numerical experiments used in my publications would be part of the library of examples.
偏微分方程(PDEs)是科学、工程和其他领域的重要工具。例如,偏微分方程被用作流体流动、天气系统、股票市场以及化学和生物过程的数学模型。它们也广泛应用于医学成像、诊断、数据处理和计算机视觉。由于精确的解很少可用,实际的进展往往是通过科学计算:即使用精确和有效的数值方法来计算近似解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Macdonald, Colin其他文献
Macdonald, Colin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Macdonald, Colin', 18)}}的其他基金
Numerical Computing on Evolving Domains
演化领域的数值计算
- 批准号:
RGPIN-2016-03757 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Numerical Computing on Evolving Domains
演化领域的数值计算
- 批准号:
RGPIN-2016-03757 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Numerical Computing on Evolving Domains
演化领域的数值计算
- 批准号:
RGPIN-2016-03757 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Numerical Computing on Evolving Domains
演化领域的数值计算
- 批准号:
RGPIN-2016-03757 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Numerical Computing on Evolving Domains
演化领域的数值计算
- 批准号:
493018-2016 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Numerical Computing on Evolving Domains
演化领域的数值计算
- 批准号:
RGPIN-2016-03757 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Numerical Computing on Evolving Domains
演化领域的数值计算
- 批准号:
493018-2016 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Computing time-dependent processes on surfaces
计算表面上与时间相关的过程
- 批准号:
358132-2008 - 财政年份:2009
- 资助金额:
$ 1.97万 - 项目类别:
Postdoctoral Fellowships
Computing time-dependent processes on surfaces
计算表面上与时间相关的过程
- 批准号:
358132-2008 - 财政年份:2008
- 资助金额:
$ 1.97万 - 项目类别:
Postdoctoral Fellowships
相似海外基金
CRII: SaTC: Evolving I/O Protocols for Confidential Computing
CRII:SaTC:用于机密计算的不断发展的 I/O 协议
- 批准号:
2348130 - 财政年份:2024
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Numerical Computing on Evolving Domains
演化领域的数值计算
- 批准号:
RGPIN-2016-03757 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Numerical Computing on Evolving Domains
演化领域的数值计算
- 批准号:
RGPIN-2016-03757 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Numerical Computing on Evolving Domains
演化领域的数值计算
- 批准号:
RGPIN-2016-03757 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Category I: Bridges-2: Scalable Converged Computing, Data, and Analytics for Rapidly Evolving Science and Engineering Research
第一类:Bridges-2:用于快速发展的科学和工程研究的可扩展融合计算、数据和分析
- 批准号:
1928147 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Cooperative Agreement
Numerical Computing on Evolving Domains
演化领域的数值计算
- 批准号:
RGPIN-2016-03757 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Numerical Computing on Evolving Domains
演化领域的数值计算
- 批准号:
493018-2016 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Numerical Computing on Evolving Domains
演化领域的数值计算
- 批准号:
RGPIN-2016-03757 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Evolving Artificial Intelligence for Swarm Robotics on Cloud Computing
云计算上群机器人不断发展的人工智能
- 批准号:
17K00302 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical Computing on Evolving Domains
演化领域的数值计算
- 批准号:
493018-2016 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Accelerator Supplements