Lie and Jordan algebras, and related groups
李代数和乔丹代数以及相关群
基本信息
- 批准号:RGPIN-2016-04183
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Symmetry is omnipresent in nature and the source of much enjoyment for all of us. But it is not only in nature that we find symmetry. It is everywhere in our lives. One just has to think about music (Bach) or paintings (Escher). Even more, symmetry is basic for our understanding of the physical world.
Since the 19th century the mathematical concept of a group has been one of the most basic abstract structures used by mathematicians to describe symmetry arising in many different incarnations. Mathematicians have developed a sophisticated theory for groups with more and more profound applications. The applications of groups within and outside of mathematics have been a remarkable success story.
The most important type of groups originates from the fundamental work of the 19th-century Norwegian mathematician Sophus Lie. These so-called Lie groups and their algebraic analogues, the algebraic groups, are distinguished by the fact that one can associate another mathematical structure, a Lie algebra, to them. In essence, Lie algebras are first order approximations of the corresponding groups. My research is concerned with Lie algebras, algebraic groups and the interplay between them.
The main goals in any theory of Lie algebras are to understand their internal structure and their representations. These are also my long-term goals for the Lie algebras I plan to study: extended affine Lie algebras, root-graded Lie algebras and equivariant map Lie algebras. These Lie algebras are important for present-day Lie algebra theory.
For example, extended affine Lie algebras generalize finite-dimensional semisimple and affine Kac-Moody Lie algebras. A fundamental result for these two examples of extended affine Lie algebras is conjugacy of their Cartan subalgebras (celebrated results of Chevalley and Peterson-Kac). My research aims to extend conjugacy to all extended affine Lie algebras. This will have important consequences for their structure theory.
In the area of groups, I will be working on two types of groups, Steinberg groups and exceptional groups. The former have been studied in many different types. The theory of Steinberg groups that I have developed jointly with Ottmar Loos will unify all of them, thus allowing substantial simplifications of the theory. It introduces new methods by systematically employing root systems and Jordan pairs.
Exceptional groups are the most fascinating, but also most complicated of all algebraic groups. They have found applications in many areas of mathematics and in physics. So far, they have mostly been studied over base fields. My goal is to describe exceptional groups over rings, using a combination of advanced methods from nonassociative algebras, group schemes and descent theory. The extension from base fields to base rings will shed new light on the construction of these groups.
对称在自然界中无处不在,也是我们所有人享受的源泉。但对称性不仅仅存在于自然界。它在我们的生活中无处不在。只要想想音乐(巴赫)或绘画(埃舍尔)就知道了。更重要的是,对称是我们理解物理世界的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neher, Erhard其他文献
Neher, Erhard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neher, Erhard', 18)}}的其他基金
Lie and Jordan algebras, and related groups
李代数和乔丹代数以及相关群
- 批准号:
RGPIN-2016-04183 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Lie and Jordan algebras, and related groups
李代数和乔丹代数以及相关群
- 批准号:
RGPIN-2016-04183 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Lie and Jordan algebras, and related groups
李代数和乔丹代数以及相关群
- 批准号:
RGPIN-2016-04183 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Lie and Jordan algebras, and related groups
李代数和乔丹代数以及相关群
- 批准号:
RGPIN-2016-04183 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Extended affine Lie algebras, groups and representation theory
扩展仿射李代数、群和表示论
- 批准号:
8836-2011 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Extended affine Lie algebras, groups and representation theory
扩展仿射李代数、群和表示论
- 批准号:
8836-2011 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Extended affine Lie algebras, groups and representation theory
扩展仿射李代数、群和表示论
- 批准号:
8836-2011 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Extended affine Lie algebras, groups and representation theory
扩展仿射李代数、群和表示论
- 批准号:
8836-2011 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Extended affine Lie algebras, groups and representation theory
扩展仿射李代数、群和表示论
- 批准号:
8836-2011 - 财政年份:2011
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Infinite-dimensional Lie algebras and their associated groups
无限维李代数及其相关群
- 批准号:
8836-2006 - 财政年份:2010
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Lie和Jordan代数:表示和同调
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
和Jordan代数相关的月光型顶点算子代数的研究
- 批准号:11801578
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
算子代数上的初等映射和Jordan初等映射
- 批准号:10826065
- 批准年份:2008
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Lie and Jordan algebras, and related groups
李代数和乔丹代数以及相关群
- 批准号:
RGPIN-2016-04183 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Representations of Lie and Jordan Algebras, Their Representations and Applications
李代数和乔丹代数的表示及其表示和应用
- 批准号:
1934577 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Lie and Jordan algebras, and related groups
李代数和乔丹代数以及相关群
- 批准号:
RGPIN-2016-04183 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Lie and Jordan algebras, and related groups
李代数和乔丹代数以及相关群
- 批准号:
RGPIN-2016-04183 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Lie and Jordan algebras, and related groups
李代数和乔丹代数以及相关群
- 批准号:
RGPIN-2016-04183 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Jordan structure and associated Lie algebras groups and root systems
Jordan 结构和相关的李代数群和根系统
- 批准号:
8836-2001 - 财政年份:2005
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Jordan structure and associated Lie algebras groups and root systems
Jordan 结构和相关的李代数群和根系统
- 批准号:
8836-2001 - 财政年份:2003
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Jordan structure and associated Lie algebras groups and root systems
Jordan 结构和相关的李代数群和根系统
- 批准号:
8836-2001 - 财政年份:2002
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Jordan structure and associated Lie algebras groups and root systems
Jordan 结构和相关的李代数群和根系统
- 批准号:
8836-2001 - 财政年份:2001
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Jordan pairs and associated groups and Lie algebras
Jordan 对和相关群以及李代数
- 批准号:
8836-1997 - 财政年份:2000
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual