Optimal Design of Customer Returns Policy and its Impact on Supply Chain
客户退货政策的优化设计及其对供应链的影响
基本信息
- 批准号:RGPIN-2016-05008
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Product returns have become a major challenge in the retail industry, as they are both significant and costly; the average customer returns rate is 8.9% and the monetary value of returns was $28 billion in 2013 in Canada. Return rates of some fashion items can be as high as 74%. Research, however, shows that only about 5% of customer returns are due to defects. Customer returns policies range from “100% Money Back Guarantees” to “no refunds.” They influence customers’ purchase and returns decisions as well as retailers’ pricing and order decisions, and thus impact the performance and profitability of supply chains. The return, processing, resale, reuse, and/or disposal of products also have environmental and social consequences, and are therefore critical to supply chain sustainability.
Customer returns have recently attracted much attention in both academia and practice. Studies of the design of optimal customer returns policy structures and their impact on supply chains, however, are rather limited. Through my explorations over the past several years, I have identified significant research gaps related to customer returns, and I propose to elucidate: 1) a more accurate customer returns model, incorporating customer valuations prior to and after purchase, and the associated optimal customer returns policy; 2) customized and dynamic returns policies, offering different policies to different customers and in different time periods; 3) optimal design of customer returns policy in conjunction with inventory and pricing decisions when supply chain members face competition; 4) integration of a manufacturer’s buyback policy and retailers’ customer returns policies in the multi-channel supply chain; and 5) impact of the optimal customer returns policy design on supply chain sustainability. These will be done through mathematical modelling, using quantitative methods, such as optimization and game theory.
The proposed research quantifies factors of economic and environmental significance associated with product returns, and mitigates the negative impact of customer returns through optimal design of customer returns policies. The research program proposed is novel and innovative in considering factors and issues either not discussed or newly emerging in the existing literature on design of optimal returns policy: change of customers’ prior and posterior values, supply chain competition and sustainability, customized and dynamic customer returns policies, and integration with buyback policies. The research program provides strategic opportunities for supply chain members to be more efficient and sustainable through the design of optimal returns policies. It will also benefit both academia and industry, by filling significant gaps in knowledge, providing opportunities to train future researchers, and helping Canadian companies compete in an increasingly complex global economy.
产品退货已成为零售业的主要挑战,因为它们既重要又昂贵; 2013年加拿大的平均客户退货率为8.9%,退货的货币价值为280亿美元。一些时尚单品的退货率可高达74%。然而,研究表明,只有约5%的客户退货是由于缺陷。客户退货政策从“100%退款保证”到“不退款”不等。它们会影响顾客的购买和退货决策以及零售商的定价和订单决策,从而影响供应链的绩效和盈利能力。产品的返回、加工、转售、再利用和/或处置也会产生环境和社会后果,因此对供应链的可持续性至关重要。
近年来,顾客退货问题引起了学术界和实务界的广泛关注。然而,关于最优顾客退货政策结构的设计及其对供应链的影响的研究却相当有限。通过几年来的探索,笔者发现了与顾客退货相关的重要研究空白,并提出了以下建议:1)建立一个更准确的顾客退货模型,将顾客购买前后的评价结合起来,并制定相应的最优顾客退货政策; 2)制定个性化的动态退货政策,针对不同的顾客在不同的时间段提供不同的政策; 3)在供应链成员面临竞争时,顾客退货政策与库存和定价决策的优化设计; 4)多渠道供应链中制造商的回购政策与零售商的顾客退货政策的整合; 5)最优顾客退货政策设计对供应链可持续性的影响。这些工作将通过数学建模,使用定量方法,如优化和博弈论来完成。
该研究量化了与产品退货相关的经济和环境重要性因素,并通过客户退货政策的优化设计来减轻客户退货的负面影响。提出的研究方案是新颖的和创新的考虑因素和问题,无论是没有讨论或新出现的最优退货政策的设计在现有的文献:客户的先验和后验值的变化,供应链竞争和可持续性,定制和动态的客户退货政策,并与回购政策的整合。该研究计划为供应链成员提供了战略机会,通过设计最佳回报政策提高效率和可持续性。它还将使学术界和工业界受益,填补知识方面的重大空白,为培训未来的研究人员提供机会,并帮助加拿大公司在日益复杂的全球经济中竞争。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chen, Jing(Jenny)其他文献
Chen, Jing(Jenny)的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chen, Jing(Jenny)', 18)}}的其他基金
Optimal Design of Customer Returns Policy and its Impact on Supply Chain
客户退货政策的优化设计及其对供应链的影响
- 批准号:
RGPIN-2016-05008 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Revenue management in the presence of customer returns
存在客户退货的收入管理
- 批准号:
372400-2010 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Revenue management in the presence of customer returns
存在客户退货的收入管理
- 批准号:
372400-2010 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Revenue management in the presence of customer returns
存在客户退货的收入管理
- 批准号:
372400-2010 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Revenue management in the presence of customer returns
存在客户退货的收入管理
- 批准号:
372400-2010 - 财政年份:2011
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Revenue management in the presence of customer returns
存在客户退货的收入管理
- 批准号:
372400-2010 - 财政年份:2010
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
在噪声和约束条件下的unitary design的理论研究
- 批准号:12147123
- 批准年份:2021
- 资助金额:18 万元
- 项目类别:专项基金项目
相似海外基金
Robust aesthetic design using deep learning with consideration of variations in customer Kansei evaluation and inter-customer Kansei variation
使用深度学习进行稳健的美学设计,考虑客户感性评估的变化和客户间感性变化
- 批准号:
23K11749 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The effect of customer satisfaction on design and profitability of supply chains
客户满意度对供应链设计和盈利能力的影响
- 批准号:
RGPIN-2016-04215 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Revenue Management and Policy Design in the Presence of Customer Multi-Item Shopping Behavior
顾客多品购物行为下的收益管理与政策设计
- 批准号:
RGPIN-2020-04321 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Revenue Management and Policy Design in the Presence of Customer Multi-Item Shopping Behavior
顾客多品购物行为下的收益管理与政策设计
- 批准号:
RGPIN-2020-04321 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Optimal Marketing Design for Customer Retention and Acquisition of Seasonal Services
保留客户和获取季节性服务的最佳营销设计
- 批准号:
563301-2021 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
University Undergraduate Student Research Awards
The effect of customer satisfaction on design and profitability of supply chains
客户满意度对供应链设计和盈利能力的影响
- 批准号:
RGPIN-2016-04215 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Optimal Design of Customer Returns Policy and its Impact on Supply Chain
客户退货政策的优化设计及其对供应链的影响
- 批准号:
RGPIN-2016-05008 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Revenue Management and Policy Design in the Presence of Customer Multi-Item Shopping Behavior
顾客多品购物行为下的收益管理与政策设计
- 批准号:
DGECR-2020-00383 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
Optimal Design of Customer Returns Policy and its Impact on Supply Chain
客户退货政策的优化设计及其对供应链的影响
- 批准号:
RGPIN-2016-05008 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Revenue Management and Policy Design in the Presence of Customer Multi-Item Shopping Behavior
顾客多品购物行为下的收益管理与政策设计
- 批准号:
RGPIN-2020-04321 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual