Advanced theory and methods for the de-identification of small cohorts, complex and composed health data

小群体、复杂组合健康数据去识别化的先进理论和方法

基本信息

  • 批准号:
    RGPIN-2016-06781
  • 负责人:
  • 金额:
    $ 2.26万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

The demand for health data for research and public health purposes has never been so great, from the growth in clinical trials transparency initiatives, Electronic Medical Records being used to build learning healthcare systems, the development of real world evidence databases that integrate health data from multiple sources and used for observational research, and a desire to link to wearables and other monitoring devices. The collection of data is coming from providers, payers, employers, wellness programs, and even patients themselves, with increasing collaboration between academic institutions, provider organizations, health care systems and life sciences companies. We have made many critical achievements in our privacy research which represent improvements over the existing body of work. As health data uses evolve and the nature of health data that is being shared also evolves, there are important areas that require more study: - One of the best ways to allow the sharing of data for secondary purposes is to de-identify it. A key part of de-identification is the estimation of re-identification risk. Small cohorts pose a particular challenge to estimate re-identification risk. We will develop suitable estimators for small data sets. This will be important in developing successful models for clinical trials data sharing and studies on rare diseases and conditions. - With the growing number of sources of data, there is more demand to join data sets for building real world evidence databases. Often the individual de-identified data are being linked without consideration of the potential increase in re-identification risk. There is a need to develop a composition theory around re-identification risk. A composition theory would facilitate the estimation of the risk of re-identification of a linked data set using information from the source data. - Data complexity is growing rapidly; the data is constantly being updated and growing. The resulting complex data sets will require big data de-identification methods to ensure they scale appropriately. There is a need for streaming de-identification methods that are designed specifically for health data sets. - With the increasing availability of free-form medical text in EMRs, the analysis of this information is adding detail and context to structured data. More realistic evaluation frameworks for the de-identification of free-form text need to be developed that are designed specifically for the de-identification context, and then tools evaluated using that framework. Our lab has been effective in transitioning its research results into practice through standards and software that have been adopted globally. We will continue this trend as we develop new methods from this research, facilitating the sharing of electronic health information for secondary purposes while protecting the privacy of patients and the identity of providers.
研究和公共卫生目的对健康数据的需求从未如此之大,从临床试验透明度倡议的增长,电子医疗记录被用于建立学习型医疗保健系统,真实世界证据数据库的发展,整合了来自多个来源的健康数据并用于观察研究,以及与可穿戴设备和其他监测设备连接的愿望。随着学术机构、医疗服务提供者组织、医疗保健系统和生命科学公司之间的合作日益加强,数据的收集来自医疗服务提供者、付款人、雇主、健康计划,甚至患者自己。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ElEmam, Khaled其他文献

ElEmam, Khaled的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ElEmam, Khaled', 18)}}的其他基金

Advanced Theory and Methods for Evaluating the Utility and Privacy Risks of Synthetic Health Data
评估综合健康数据的实用性和隐私风险的先进理论和方法
  • 批准号:
    RGPIN-2022-04811
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced theory and methods for the de-identification of small cohorts, complex and composed health data
小群体、复杂组合健康数据去识别化的先进理论和方法
  • 批准号:
    RGPIN-2016-06781
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced theory and methods for the de-identification of small cohorts, complex and composed health data
小群体、复杂组合健康数据去识别化的先进理论和方法
  • 批准号:
    RGPIN-2016-06781
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced theory and methods for the de-identification of small cohorts, complex and composed health data
小群体、复杂组合健康数据去识别化的先进理论和方法
  • 批准号:
    RGPIN-2016-06781
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced theory and methods for the de-identification of small cohorts, complex and composed health data
小群体、复杂组合健康数据去识别化的先进理论和方法
  • 批准号:
    RGPIN-2016-06781
  • 财政年份:
    2018
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced theory and methods for the de-identification of small cohorts, complex and composed health data
小群体、复杂组合健康数据去识别化的先进理论和方法
  • 批准号:
    RGPIN-2016-06781
  • 财政年份:
    2017
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Metrics and methods for the de-identification of health information
健康信息去识别化的指标和方法
  • 批准号:
    186936-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Metrics and methods for the de-identification of health information
健康信息去识别化的指标和方法
  • 批准号:
    186936-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Electronic Health Information
电子健康信息
  • 批准号:
    1000216983-2009
  • 财政年份:
    2014
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Canada Research Chairs
Electronic Health Information
电子健康信息
  • 批准号:
    1000216983-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
  • 批准号:
    82371997
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
  • 批准号:
    LY21E080004
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
高阶微分方程的周期解及多重性
  • 批准号:
    11501240
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
四维流形上的有限群作用与奇异光滑结构
  • 批准号:
    11301334
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Optimizing Use of Advanced Diabetes Technology for Self-Management in Adolescents with Type 1 Diabetes: Integration of Real-Time Glucose and Narrative Data
优化使用先进糖尿病技术对 1 型糖尿病青少年进行自我管理:实时血糖和叙述数据的集成
  • 批准号:
    10569293
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
Advanced Theory and Methods for Evaluating the Utility and Privacy Risks of Synthetic Health Data
评估综合健康数据的实用性和隐私风险的先进理论和方法
  • 批准号:
    RGPIN-2022-04811
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced theory and methods for the de-identification of small cohorts, complex and composed health data
小群体、复杂组合健康数据去识别化的先进理论和方法
  • 批准号:
    RGPIN-2016-06781
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced theory and methods for the de-identification of small cohorts, complex and composed health data
小群体、复杂组合健康数据去识别化的先进理论和方法
  • 批准号:
    RGPIN-2016-06781
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Detection and Differential Diagnosis of Hearing Loss Using Otoacoustic Emissions
利用耳声发射对听力损失进行高级检测和鉴别诊断
  • 批准号:
    10192696
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
Advanced Detection and Differential Diagnosis of Hearing Loss Using Otoacoustic Emissions
利用耳声发射对听力损失进行高级检测和鉴别诊断
  • 批准号:
    10021315
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
Advanced Detection and Differential Diagnosis of Hearing Loss Using Otoacoustic Emissions
利用耳声发射对听力损失进行高级检测和鉴别诊断
  • 批准号:
    10685353
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
Advanced Detection and Differential Diagnosis of Hearing Loss Using Otoacoustic Emissions
利用耳声发射对听力损失进行高级检测和鉴别诊断
  • 批准号:
    10467994
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
Communicating the Gist of Prognosis: Giving Information Simply and Transparently ("GIST") in Advanced Cancer
传达预后要点:简单透明地提供晚期癌症的信息(“GIST”)
  • 批准号:
    9804724
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
Advanced theory and methods for the de-identification of small cohorts, complex and composed health data
小群体、复杂组合健康数据去识别化的先进理论和方法
  • 批准号:
    RGPIN-2016-06781
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了