Electrochemical conversion of CO2 to value-added products at near ambient temperatures.

在接近环境温度下将二氧化碳电化学转化为增值产品。

基本信息

  • 批准号:
    502827-2016
  • 负责人:
  • 金额:
    $ 6.41万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The increasing consumption of fossil fuels in the form of oil and gas has resulted in the record breaking emission of carbon dioxide (CO2) into earth's atmosphere. The excessive atmosphric CO2 contributes the largest portion of greenhouse gases and causes severe climate changes such as global warming and other natural disasters, adversely affecting the living environment of human being. Hence, reducing CO2 emission and/or re-utilizing CO2 are imperative and have drawn research efforts worldwide. This proposed research project is our response to the above challenge. The best way to eliminate CO2 is to convert it to useful products, rather than simple storage or burying it deep in the ground through injection. However, CO2 molecule is very stable and does not usually participate in the chemical reactions. Therefore, large amount of energy and high temperature are usually required to break CO2 molecules to chemically convert it to other products, which makes large scale industrial operation not practical.Our proposed project, on the other hand, aims to electrochemically convert CO2 to CO (carbon monoxide) at room temperature with the merits of less energy required and easier operation handling. The product, CO, has broad range of applications in petrochemical and pharmaceutical industries. The proposed method has a number of additional advantages including easy process control by electrochemical potentials, the ability to recycle electrolyte and possible use of renewable energy sources such as solar, wind powers for an even cleaner process that would otherwise be under-utilized or even wasted. The challenge this technology currently faces is its low efficiency, i.e., the existing catalysts are not catalytic enough to accelerate the CO2 conversion process on the electrodes. Our research project will not only develop an effective electrolytic cell for CO2 reduction, but also and more importantly, develop more efficient, low-priced and durable new electrocatalysts that have high current density, high selectivity and low electrochemical barrier for converting CO2. The success of this project will enhance the competitiveness of Alberta industry in world market and benefit Canadian economy.
以石油和天然气为形式的化石燃料的消耗不断增加,导致二氧化碳(CO2)向地球大气层的排放量破纪录。大气中过量的二氧化碳贡献了温室气体的最大比例,并导致全球变暖等严重的气候变化和其他自然灾害,对人类的生存环境造成了不利影响。因此,减少二氧化碳排放和/或重新利用二氧化碳势在必行,并已吸引了全世界的研究努力。此次提出的研究项目正是我们对上述挑战的回应。消除二氧化碳的最好方法是将其转化为有用的产品,而不是简单地储存或通过注射将其深埋在地下。然而,CO2分子非常稳定,通常不参与化学反应。因此,通常需要大量的能量和高温才能将二氧化碳分子化学转化为其他产品,这使得大规模的工业操作变得不现实。另一方面,我们提出的项目旨在室温下将二氧化碳电化学转化为一氧化碳(CO),具有所需能源较少,操作操作容易的优点。该产品CO在石化和制药行业有着广泛的应用。拟议的方法还有许多其他优点,包括通过电化学势轻松控制工艺,回收电解液的能力,以及可能使用太阳能、风能等可再生能源,以实现更清洁的工艺,否则这些工艺将得不到充分利用,甚至被浪费。这项技术目前面临的挑战是效率低,即现有催化剂的催化作用不足以加速电极上的二氧化碳转化过程。我们的研究项目不仅将开发一种有效的二氧化碳还原电解槽,更重要的是开发出更高效、廉价、耐用的高电流密度、高选择性和低电化学势垒的新型电催化剂来转化二氧化碳。该项目的成功将提高艾伯塔省工业在世界市场上的竞争力,并使加拿大经济受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luo, Jingli其他文献

Effects of particle angular velocity and friction force on erosion enhanced corrosion of 304 stainless steel
  • DOI:
    10.1016/j.corsci.2010.05.012
  • 发表时间:
    2010-09-01
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Mohammadi, Farzad;Luo, Jingli
  • 通讯作者:
    Luo, Jingli
Aqueous-organic phase-transfer of highly stable gold, silver, and platinum nanoparticles and new route for fabrication of gold nanofilms at the oil/water interface and on solid supports
  • DOI:
    10.1021/jp0609885
  • 发表时间:
    2006-06-29
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Feng, Xingli;Ma, Houyi;Luo, Jingli
  • 通讯作者:
    Luo, Jingli
Corrosion and wear resistance of chrome white irons - A correlation to their composition and microstructure
Sulfur-Tolerant Anode Catalyst for Solid Oxide Fuel Cells Operating on H2S-Containing Syngas
  • DOI:
    10.1021/cm901910p
  • 发表时间:
    2010-02-09
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Peng, Cheng;Luo, Jingli;Chuang, Karl T.
  • 通讯作者:
    Chuang, Karl T.

Luo, Jingli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luo, Jingli', 18)}}的其他基金

Corrosion Mechanism and Control of Electrode Materials for Advanced Electrochemical System
先进电化学系统电极材料腐蚀机理及控制
  • 批准号:
    RGPIN-2016-05494
  • 财政年份:
    2021
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Discovery Grants Program - Individual
Corrosion Mechanism and Control of Electrode Materials for Advanced Electrochemical System
先进电化学系统电极材料腐蚀机理及控制
  • 批准号:
    RGPIN-2016-05494
  • 财政年份:
    2020
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Discovery Grants Program - Individual
Corrosion Mechanism and Control of Electrode Materials for Advanced Electrochemical System
先进电化学系统电极材料腐蚀机理及控制
  • 批准号:
    RGPIN-2016-05494
  • 财政年份:
    2019
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Discovery Grants Program - Individual
Electrochemical conversion of CO2 to value-added products at near ambient temperatures.
在接近环境温度下将二氧化碳电化学转化为增值产品。
  • 批准号:
    502827-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Collaborative Research and Development Grants
Corrosion mechanism and corrosion control of slotted liners
开缝衬管腐蚀机理及腐蚀控制
  • 批准号:
    488361-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Collaborative Research and Development Grants
Electrochemical conversion of CO2 to value-added products at near ambient temperatures.
在接近环境温度下将二氧化碳电化学转化为增值产品。
  • 批准号:
    502827-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Collaborative Research and Development Grants
Corrosion Mechanism and Control of Electrode Materials for Advanced Electrochemical System
先进电化学系统电极材料腐蚀机理及控制
  • 批准号:
    RGPIN-2016-05494
  • 财政年份:
    2018
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Discovery Grants Program - Individual
Corrosion Mechanism and Control of Electrode Materials for Advanced Electrochemical System
先进电化学系统电极材料腐蚀机理及控制
  • 批准号:
    RGPIN-2016-05494
  • 财政年份:
    2017
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Discovery Grants Program - Individual
Corrosion mechanism and corrosion control of slotted liners
开缝衬管腐蚀机理及腐蚀控制
  • 批准号:
    488361-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Collaborative Research and Development Grants
Corrosion mechanism and corrosion control of slotted liners
开缝衬管腐蚀机理及腐蚀控制
  • 批准号:
    488361-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

二氧化碳与高碳烷烃耦合转化多相催化体系研究
  • 批准号:
    22372180
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
有机氟化合物功能基团的化学转换及其应用研究
  • 批准号:
    20772146
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324346
  • 财政年份:
    2023
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324345
  • 财政年份:
    2023
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Standard Grant
High Carbon Efficiency CO2 Electrochemical Conversion to Valuable Chemicals and Fuels with Zero CO2 Reactant Loss and Zero Liquid Product Loss
高碳效率二氧化碳电化学转化为有价值的化学品和燃料,二氧化碳反应物零损失和液体产品零损失
  • 批准号:
    576683-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Banting Postdoctoral Fellowships Tri-council
Development of an Integrated CO2 Capture and Electrochemical Conversion System
集成二氧化碳捕获和电化学转换系统的开发
  • 批准号:
    558964-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of an Integrated CO2 Capture and Electrochemical Conversion System
集成二氧化碳捕获和电化学转换系统的开发
  • 批准号:
    558964-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Coupled CO2 Capture and Electrochemical Conversion
耦合 CO2 捕获和电化学转化
  • 批准号:
    560781-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Alliance Grants
Production of Concentrated Liquid Products Using Electrochemical CO2 Conversion
利用电化学 CO2 转化生产浓缩液体产品
  • 批准号:
    566102-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Developing gas diffusion electrodes for electrochemical CO2 conversion
开发用于电化学 CO2 转化的气体扩散电极
  • 批准号:
    553880-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Electrochemical Conversion of Supercritical CO2 to Propylene
超临界二氧化碳电化学转化为丙烯
  • 批准号:
    534864-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Electrochemical Conversion of Supercritical CO2 to Propylene
超临界二氧化碳电化学转化为丙烯
  • 批准号:
    534864-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了