Towards more efficient machine learning algorithms: theory and practice

迈向更高效的机器学习算法:理论与实践

基本信息

  • 批准号:
    RGPIN-2016-05942
  • 负责人:
  • 金额:
    $ 2.77万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Machine learning is concerned with the development of intelligent computer systems that are able to learn and generalize from collected data. This ability is required for many important tasks that are just too complex to be explicitly programmed by humans such as recognizing voice directives on smart phones, or recognizing faces in images, or displaying the best results from a query. The best computer systems that achieve these tasks have in common the fact that their ability has been acquired by running learning algorithms on vast amounts of data. Many of these tasks are now so vital to our economy that machine learning-based technology is now commonplace. However, that technology needs to be greatly improved. Indeed, credit cards are too frequently being blocked, we are still receiving too many undesirable emails, and automatic speech recognition is still not satisfactory. Building more powerful hardware is just part of the solution as we must also find the most efficient learning algorithms. Consequently, the proposed research program aims at addressing the important problem of how to improve and modify existing learning algorithms such that they yield better predictors while using a minimal (or, at least, an acceptable) amount of resources. To meet this objective we plan to approach challenging machine-learning problems from both a theoretical and a practical perspective. Theoretical analysis is needed because we want to find efficient learning algorithms with provable guarantees. More specifically, we plan, in the short term, to improve the existing learning algorithms for structured output prediction and domain adaptation. These are currently two challenging machine-learning problems that model situations often encountered in practice but for which we do not have yet satisfactory learning algorithms. We also plan to find the most efficient boosting-type algorithms for learning from large-scale data sets. Finally, in the long term, we plan to expand the set covering machine and the decision list machine for predicting phenotypes from genomic data. These are learning algorithms (that we have proposed in the past) that produce uncharacteristically sparse predictors that are easy to interpret. Hence, these predictors can, in principle, help us to uncover the genomic cause of a phenotype. The impressive results we have obtained recently on the prediction of antibiotic resistance from bacterial genomes motivate us to consider, in the short term, the more ambitious problem of predicting cancer types from human sequences, which could be DNA, RNA, or protein sequences. It is thus expected that this research program will yield provably efficient learning methods for different machine learning-based applications that, in turn, will improve our quality of life. Moreover, it is expected that this research program will deliver the equivalent of two M.Sc graduates and four Ph.D graduates.
机器学习关注的是能够从收集的数据中学习和概括的智能计算机系统的开发。许多重要任务都需要这种能力,这些任务太复杂,无法由人类显式编程,例如识别智能手机上的语音指令,或识别图像中的人脸,或显示查询的最佳结果。实现这些任务的最好的计算机系统都有一个共同点,即它们的能力是通过在大量数据上运行学习算法获得的。其中许多任务现在对我们的经济至关重要,以至于基于机器学习的技术现在已经司空见惯。然而,这项技术需要大大改进。事实上,信用卡太频繁地被阻止,我们仍然收到太多不受欢迎的电子邮件,自动语音识别仍然不能令人满意。构建更强大的硬件只是解决方案的一部分,因为我们还必须找到最有效的学习算法。因此,拟议的研究计划旨在解决如何改进和修改现有学习算法的重要问题,使它们在使用最小(或至少是可接受的)资源量的同时产生更好的预测。为了实现这一目标,我们计划从理论和实践的角度来解决具有挑战性的机器学习问题。理论分析是必要的,因为我们希望找到有效的学习算法与可证明的保证。更具体地说,我们计划在短期内改进现有的结构化输出预测和域自适应学习算法。这是目前两个具有挑战性的机器学习问题,它们对实践中经常遇到的情况进行建模,但我们还没有令人满意的学习算法。我们还计划找到最有效的提升型算法,用于从大规模数据集中学习。最后,从长远来看,我们计划扩展集合覆盖机和决策列表机,用于从基因组数据预测表型。这些是学习算法(我们过去已经提出过),可以产生易于解释的非典型稀疏预测器。因此,原则上,这些预测因子可以帮助我们揭示表型的基因组原因。我们最近在从细菌基因组预测抗生素耐药性方面取得了令人印象深刻的结果,这促使我们在短期内考虑从人类序列(可能是DNA、RNA或蛋白质序列)预测癌症类型的更雄心勃勃的问题。因此,预计这项研究计划将为不同的基于机器学习的应用提供可证明的有效学习方法,从而提高我们的生活质量。此外,预计这项研究计划将提供相当于两个硕士毕业生和四个博士毕业生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marchand, Mario其他文献

Marchand, Mario的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marchand, Mario', 18)}}的其他基金

Towards more efficient machine learning algorithms: theory and practice
迈向更高效的机器学习算法:理论与实践
  • 批准号:
    RGPIN-2016-05942
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Machine learning for the insurance industry: predictive models, fraud detection, and fairness
保险行业的机器学习:预测模型、欺诈检测和公平性
  • 批准号:
    529584-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Collaborative Research and Development Grants
DEEL DEpendable & Explainable Learning
DEEL 值得信赖
  • 批准号:
    537462-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Collaborative Research and Development Grants
Towards more efficient machine learning algorithms: theory and practice
迈向更高效的机器学习算法:理论与实践
  • 批准号:
    RGPIN-2016-05942
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Machine learning for the insurance industry: predictive models, fraud detection, and fairness
保险行业的机器学习:预测模型、欺诈检测和公平性
  • 批准号:
    529584-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Collaborative Research and Development Grants
Towards more efficient machine learning algorithms: theory and practice
迈向更高效的机器学习算法:理论与实践
  • 批准号:
    RGPIN-2016-05942
  • 财政年份:
    2019
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Machine learning for the insurance industry: predictive models, fraud detection, and fairness
保险行业的机器学习:预测模型、欺诈检测和公平性
  • 批准号:
    529584-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Collaborative Research and Development Grants
Machine learning for the insurance industry: predictive models, fraud detection, and fairness
保险行业的机器学习:预测模型、欺诈检测和公平性
  • 批准号:
    529584-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Collaborative Research and Development Grants
Towards more efficient machine learning algorithms: theory and practice
迈向更高效的机器学习算法:理论与实践
  • 批准号:
    RGPIN-2016-05942
  • 财政年份:
    2018
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Towards more efficient machine learning algorithms: theory and practice
迈向更高效的机器学习算法:理论与实践
  • 批准号:
    RGPIN-2016-05942
  • 财政年份:
    2016
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

中国一东盟合作发展湾区中贸易深化与文化更 新的影响机理研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    地区科学 基金项目
更包容的职场:社会互动视角下残障员工工作重塑的驱动因素与作用机理
  • 批准号:
    72302151
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于机器学习开发更安全有效的有机磷阻燃剂的研究
  • 批准号:
    22306030
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
难治性过敏性鼻炎中更昔洛韦相关的特殊炎症机制及作用靶点探究
  • 批准号:
    82371124
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于铜死亡探索调更汤调控ERs/DLST-Cu+/HSP70信号通路改善绝经后认知功能障碍的机制研究
  • 批准号:
    82305290
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
东昆仑那更富晶体流纹英安岩的晶粥再活化形成机理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
调更汤介导E2/MAO-A/mBDNF信号通路改善海马神经可塑性治疗围绝经期抑郁症的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
调更汤调控海马星形胶质细胞ERs/NF-κb/AQP1信号通路降低Aβ沉积改善绝经后认知障碍的机制研究
  • 批准号:
    82174427
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
多劳何以更幸福?基于资源保存理论的老年生产性参与对生活质量的影响机制研究
  • 批准号:
    72004153
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
青藏高原东北部更尕海近2000年湖泊生态系统演化与气候变化
  • 批准号:
    41901103
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Towards More Efficient and Accurate Deep Learning Models for Segmentation, Classification, and Tracking
建立更高效、更准确的分割、分类和跟踪深度学习模型
  • 批准号:
    RGPIN-2022-04953
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Towards More Efficient and Accurate Deep Learning Models for Segmentation, Classification, and Tracking
建立更高效、更准确的分割、分类和跟踪深度学习模型
  • 批准号:
    DGECR-2022-00416
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Launch Supplement
Towards more efficient machine learning algorithms: theory and practice
迈向更高效的机器学习算法:理论与实践
  • 批准号:
    RGPIN-2016-05942
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of the long-term performance of eco-efficient low-porosity concrete systems towards a more sustainable future of the construction industry
研究生态高效低孔隙率混凝土系统的长期性能,以实现建筑业更加可持续的未来
  • 批准号:
    544257-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Investigation of the long-term performance of eco-efficient low-porosity concrete systems towards a more sustainable future of the construction industry
研究生态高效低孔隙率混凝土系统的长期性能,以实现建筑业更加可持续的未来
  • 批准号:
    544257-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Towards more efficient machine learning algorithms: theory and practice
迈向更高效的机器学习算法:理论与实践
  • 批准号:
    RGPIN-2016-05942
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Towards more efficient machine learning algorithms: theory and practice
迈向更高效的机器学习算法:理论与实践
  • 批准号:
    RGPIN-2016-05942
  • 财政年份:
    2019
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of the long-term performance of eco-efficient low-porosity concrete systems towards a more sustainable future of the construction industry
研究生态高效低孔隙率混凝土系统的长期性能,以实现建筑业更加可持续的未来
  • 批准号:
    544257-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Towards more efficient machine learning algorithms: theory and practice
迈向更高效的机器学习算法:理论与实践
  • 批准号:
    RGPIN-2016-05942
  • 财政年份:
    2018
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Towards more efficient machine learning algorithms: theory and practice
迈向更高效的机器学习算法:理论与实践
  • 批准号:
    RGPIN-2016-05942
  • 财政年份:
    2016
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了