"Rational approximants, sequences and series, and applications"

“有理近似、数列和级数以及应用”

基本信息

  • 批准号:
    222884-2012
  • 负责人:
  • 金额:
    $ 0.87万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Rational approximation, including Padé approximation, is one of the main areas in Approximation Theory. The study of multivariate rational approximants is relatively new, partly because of the computational difficulties involved, and lends itself to experimentation with computer algebra packages. Part of our intention is to make as much of the study as systematic as possible, and to construct as many of the explicit approximants as we can. In the past few years, we successfully constructed explicit multivariate Padé approximants to some multivariate functions. Part of this proposal is to keep the momentum and explore more explicit constructions. There are many exciting mathematical and physical applications of these constructions that cover the spectrum from Number Theory to Signal Processing. We already have had several applications in Number Theory, and are going to explore more in Number Theory and Fourier Analysis. Another part of this proposal is to study various convergence problems of Fourier series and summability properties of some infinite series. Fourier series are a type of trigonometric series, and their convergence problems are always fundamental in Fourier Analysis and applications. Finding the weakest condition on the coefficients of the series, so that the series is uniformly convergent (or summable), i.e., finding the largest group of uniformly convergent series of some type (or summability factors), has been always important, and we have made some important contributions. Our goals include more advances in theory and applications.
有理逼近,包括Padé逼近,是逼近理论的主要研究领域之一。多元有理逼近的研究相对较新,部分原因是涉及的计算困难,并适合于用计算机代数程序包进行实验。我们的部分意图是使研究尽可能系统化,并构建尽可能多的显式近似。在过去的几年里,我们成功地构造了一些多元函数的显式多元Padé逼近。这一提议的一部分是保持势头,探索更明确的构建。这些结构有许多令人兴奋的数学和物理应用,涵盖了从数论到信号处理的各个领域。我们已经在数论中有了几个应用,并将在数论和傅立叶分析中探索更多。研究傅立叶级数的各种收敛问题和某些无穷级数的可和性。傅里叶级数是三角级数的一种,其收敛问题一直是傅里叶分析和应用中的基本问题。寻找级数系数的最弱条件,使级数一致收敛(或可求和),即寻找某种类型(或可和因子)的一致收敛级数的最大群,一直是一个重要的问题,我们做出了一些重要贡献。我们的目标包括在理论和应用方面取得更多进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhou, Ping其他文献

Trehalose inhibits wild-type alpha-synuclein fibrillation and overexpression and protects against the protein neurotoxicity in transduced PC12 cells
海藻糖抑制野生型 α-突触核蛋白纤维颤动和过度表达,并防止转导的 PC12 细胞中的蛋白质神经毒性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Jiang, Teng;Yu, Wen-Bo;Yao, Ting;Zhi, Xiu-Ling;Pan, Luan-Feng;Wang, Jian;Zhou, Ping
  • 通讯作者:
    Zhou, Ping
The expression of pentraxin 3 and tumor necrosis factor-alpha is increased in preeclamptic placental tissue and maternal serum
先兆子痫胎盘组织和母体血清中五聚蛋白 3 和肿瘤坏死因子-α 的表达增加
  • DOI:
    10.1007/s00011-012-0507-x
  • 发表时间:
    2012-06
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Zhou, Ping;Luo, Xin;Qi, Hong-bo;Zong, Wen-jun;Zhang, Hua;Liu, Dan-dan;Li, Qing-shu
  • 通讯作者:
    Li, Qing-shu
Coherent perfect absorption in one-dimensional photonic crystal with a PT-symmetric defect
具有 PT 对称缺陷的一维光子晶体的相干完美吸收
  • DOI:
    10.1209/0295-5075/105/47008
  • 发表时间:
    2014-02
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Li, Hong-Qiang;Chen, Hong;Hu, Chun-Lian;Zhou, Ping
  • 通讯作者:
    Zhou, Ping
Microwave-assisted sample preparation for rapid and sensitive analysis of H-pylori lipid A applicable to a single colony
微波辅助样品制备,用于快速、灵敏地分析适用于单菌落的幽门螺杆菌脂质 A
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Li, Jianjun;Zhou, Ping;Ch;an, V;ana;Liu, Xin;Altman, Eleonora;Chan, Kenneth
  • 通讯作者:
    Chan, Kenneth
Enhanced cell affinity of the silk fibroin- modified PHBHHx material
丝素蛋白改性 PHBHHx 材料增强细胞亲和力

Zhou, Ping的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhou, Ping', 18)}}的其他基金

"Rational approximants, sequences and series, and applications"
“有理近似、数列和级数以及应用”
  • 批准号:
    222884-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
"Rational approximants, sequences and series, and applications"
“有理近似、数列和级数以及应用”
  • 批准号:
    222884-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
"Rational approximants, sequences and series, and applications"
“有理近似、数列和级数以及应用”
  • 批准号:
    222884-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
"Rational approximants, sequences and series, and applications"
“有理近似、数列和级数以及应用”
  • 批准号:
    222884-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Multivariate padé approximants, fourier series, and applications
多元 padé 近似、傅里叶级数和应用
  • 批准号:
    222884-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Multivariate padé approximants, fourier series, and applications
多元 padé 近似、傅里叶级数和应用
  • 批准号:
    222884-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Multivariate padé approximants, fourier series, and applications
多元 padé 近似、傅里叶级数和应用
  • 批准号:
    222884-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Multivariate padé approximants, fourier series, and applications
多元 padé 近似、傅里叶级数和应用
  • 批准号:
    222884-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Multivariate padé approximants, fourier series, and applications
多元 padé 近似、傅里叶级数和应用
  • 批准号:
    222884-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Multivariate Padé approximants in analysis and number theory
分析和数论中的多元 Padé 近似
  • 批准号:
    222884-2003
  • 财政年份:
    2006
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Physics of Quasicrystals and Their Approximants
准晶体及其近似物理
  • 批准号:
    RGPIN-2018-04482
  • 财政年份:
    2022
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Physics of Quasicrystals and Their Approximants
准晶体及其近似物理
  • 批准号:
    RGPIN-2018-04482
  • 财政年份:
    2021
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Physics of Quasicrystals and Their Approximants
准晶体及其近似物理
  • 批准号:
    RGPIN-2018-04482
  • 财政年份:
    2020
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Physics of Quasicrystals and Their Approximants
准晶体及其近似物理
  • 批准号:
    RGPIN-2018-04482
  • 财政年份:
    2019
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Physics of Quasicrystals and Their Approximants
准晶体及其近似物理
  • 批准号:
    RGPIN-2018-04482
  • 财政年份:
    2018
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Anomalous Magnetism in Quasicrystals and Approximants
准晶体和近似晶体中的反常磁性
  • 批准号:
    17K18764
  • 财政年份:
    2017
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Studies of quasicrystals and their approximants
准晶体及其近似晶体的研究
  • 批准号:
    105749-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
"Rational approximants, sequences and series, and applications"
“有理近似、数列和级数以及应用”
  • 批准号:
    222884-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Studies of quasicrystals and their approximants
准晶体及其近似晶体的研究
  • 批准号:
    105749-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Studies of quasicrystals and their approximants
准晶体及其近似晶体的研究
  • 批准号:
    105749-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了