Measurable Dynamics, Theory and Applications
可测量的动力学、理论和应用
基本信息
- 批准号:RGPIN-2014-04958
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a proposal for a research program over the next five years in an area called measurable dynamical systems or ergodic theory. In this field we use techniques from measure theory and modern probability to understand asymptotic or long range behaviour of mathematical objects (or mathematical models of physical objects) that evolve with time. Ergodic theory brings a range of powerful tools to the analysis of dynamical systems with applications both in and outside the field of mathematics. For example, in ordinary differential equations one constructs a Poincare section in order to study periodic or recurrent structures in the continuous time flow. In the case of Hamiltonian systems, Liouville measure induces an invariant measure for the discrete-time map on the section, and the tools from ergodic theory can be applied.As another example, the sequence of digits in the continued fraction expansion of a real number can be generated by iteration of the Gauss map on the unit interval. There is a finite, invariant, Borel measure (Gauss measure) on the interval preserved by the Gauss map. The orbit of a point under iteration of the Gauss map determines the continued fraction digits and their statistical properties via this measure preserving system. As a third example, the flow of the world's oceans can be modelled as a discrete-time dynamical system, where the evolution of little boxes of ocean are tracked over some fixed positive time step (ranging from hours to months, depending on the problem). While an idealized ocean flow should preserve volume, in practice, observational data only roughly coincides with volume or area preservation. A very basic problem is to find an invariant measure for this observed discrete-time transformation and to use that measure along with the tools from ergodic theory to study this important dynamical system.Our proposal considers both theoretical and computational aspects of the field. We will treat both closed (traditional) and open dynamical systems as well as non-autonomous or time-dependent systems arising as random maps. Our objectives are(1) To develop efficient, rigorous numerical schemes to approximate dynamical structures such as invariant measures, conditionally invariant measures, almost invariant structures and other such barriers to mixing in dynamical systems. The same methods will be used to estimate relaxation parameters such as escape rate and correlation decay. (2) Ergodic theory has an analogue of the transition matrix from Markov chains theory called the Perron-Frobenius operator. A second objective of this program is to extend powerful theoretical techniques for spectral analysis of the Perron-Frobenius operator to the multidimensional setting, particularly for non-uniformly hyperbolic examples. This is an important, modern area of focus in the field of ergodic theory.(3) To investigate stability and bifurcation issues that arise from random perturbation of a single transformation and/or more generally to understand the effects of small-scale parameter variation in non-autonomous systems. This is highly relevant for real-life applications such as the ocean flow model outlined above. In order to achieve these objectives the program will rely on coordinated research between the PI and existing international experts in the field and will integrate training activities for HQP located at the University of Victoria and under direct supervision of the PI.
这是未来五年在可测量动力系统或遍历理论领域的研究计划的提案。在这个领域,我们使用测度论和现代概率的技术来理解随时间演化的数学对象(或物理对象的数学模型)的渐近或长程行为。遍历理论为动力系统分析带来了一系列强大的工具,在数学领域内外都有应用。例如,在常微分方程中,人们构造庞加莱截面以研究连续时间流中的周期性或循环结构。在哈密顿系统的情况下,刘维尔测度引入了截面上离散时间图的不变测度,并且可以应用遍历理论的工具。再例如,实数的连分式展开中的数字序列可以通过单位间隔上的高斯图的迭代来生成。在高斯映射保留的区间上存在有限、不变的波雷尔测度(高斯测度)。高斯图迭代下的点的轨道通过该测度保存系统确定连分数位数及其统计特性。第三个例子,世界海洋的流动可以被建模为一个离散时间动力系统,其中海洋小盒子的演变是在某个固定的正时间步长(从几小时到几个月,取决于问题)内跟踪的。虽然理想化的海洋流量应保持体积,但实际上,观测数据仅与体积或面积保持大致一致。一个非常基本的问题是为所观察到的离散时间变换找到一个不变的度量,并使用该度量以及遍历理论的工具来研究这个重要的动力系统。我们的建议考虑了该领域的理论和计算方面。我们将把封闭(传统)和开放动力系统以及作为随机地图出现的非自主或时间相关系统视为。我们的目标是(1)开发高效、严格的数值方案来近似动态结构,例如不变测度、条件不变测度、几乎不变结构以及动态系统中混合的其他此类障碍。相同的方法将用于估计弛豫参数,例如逃逸率和相关性衰减。 (2) 遍历理论有一个类似于马尔可夫链理论的转移矩阵,称为 Perron-Frobenius 算子。该程序的第二个目标是将 Perron-Frobenius 算子谱分析的强大理论技术扩展到多维设置,特别是对于非均匀双曲示例。这是遍历理论领域的一个重要的现代焦点领域。(3)研究由单个变换的随机扰动引起的稳定性和分岔问题和/或更广泛地理解非自治系统中小规模参数变化的影响。这与现实生活中的应用高度相关,例如上面概述的洋流模型。为了实现这些目标,该计划将依靠 PI 和该领域现有国际专家之间的协调研究,并将整合位于维多利亚大学并在 PI 直接监督下的 HQP 培训活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bose, Chris其他文献
Bose, Chris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bose, Chris', 18)}}的其他基金
Measurable Dynamics, Theory and Applications
可测量的动力学、理论和应用
- 批准号:
RGPIN-2014-04958 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Measurable Dynamics, Theory and Applications
可测量的动力学、理论和应用
- 批准号:
RGPIN-2014-04958 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Measurable Dynamics, Theory and Applications
可测量的动力学、理论和应用
- 批准号:
RGPIN-2014-04958 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Measurable dynamics: theory and applications
可测量的动力学:理论与应用
- 批准号:
RGPIN-2019-06421 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Measurable dynamics: theory and applications
可测量的动力学:理论与应用
- 批准号:
RGPIN-2019-06421 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Measurable dynamics: theory and applications
可测量的动力学:理论与应用
- 批准号:
RGPIN-2019-06421 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Measurable dynamics: theory and applications
可测量的动力学:理论与应用
- 批准号:
RGPIN-2019-06421 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Measurable Dynamics, Theory and Applications
可测量的动力学、理论和应用
- 批准号:
RGPIN-2014-04958 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Von Neumann Algebras: Rigidity, Applications to Measurable Dynamics, and Model Theory
冯诺依曼代数:刚性、可测量动力学的应用和模型理论
- 批准号:
1600857 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
Measurable Dynamics, Theory and Applications
可测量的动力学、理论和应用
- 批准号:
RGPIN-2014-04958 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Measurable Dynamics, Theory and Applications
可测量的动力学、理论和应用
- 批准号:
RGPIN-2014-04958 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Measurable Dynamics, Theory and Applications
可测量的动力学、理论和应用
- 批准号:
RGPIN-2014-04958 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Measurable Dynamics and Ergodic Theory
可测量动力学和遍历理论
- 批准号:
1000216504-2009 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Canada Research Chairs