Complexity and Universality in Dynamics
动力学的复杂性和普遍性
基本信息
- 批准号:238947-2013
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main theme of my research is the study of complex behaviour generated by simple dynamics. It is awell-known fact that a physical system guided by simple dynamical laws can be difficult to model and predict.A famous example of this is the Lorenz system, which describes a very simplified weather model. Even tinydifferences in the initial conditions of the model may lead to a widely diverging weather predictions (aso-called butterfly effect). Nevertheless, it is generally believed that while individual predictions may differ, the overall picture of the dynamics remains the same, and may be simulated numerically. In the Lorenz example,the global weather patterns are described by the Lorenz butterfly attractor, which is a well-definedmathematical object. It is easily computed (indeed, the picture has become famous). In a series of recent works,we have tested the intuitive assumption that the attractor of a simple dynamical system can be modeled on acomputer. Surprisingly, for an archetypical family, known as Julia sets, this is generally false. This work opensa chapter of research which is important for practitioners, as well as for theoretical dynamicists and computerscientists. My proposal lays out a plan of further study of these challenging questions.A related theme is the study of universal laws which emerge from the complex behaviour of dynamicalsystems. Such universalities are well-known in physics. They can be understood as a self-organizationmechanism, which arises from chaotic behaviour. Perhaps the most famous examples of them areFeigenbaum-type universalities in one-dimensional dynamical systems, which have been intensively studied inthe last three decades. These studies founded a new field, known as renormalization theory, whichrevolutionized the study of dynamics. In a series of papers I completely resolved one of the two main cases ofone-dimensional universalities (the Lanford's universality for critical circle maps). My proposal outlines aprogram of study of universality in one-dimensional dynamics
我的研究主题是研究由简单动力学产生的复杂行为。众所周知,由简单动力学定律指导的物理系统很难建模和预测,一个著名的例子是洛伦兹系统,它描述了一个非常简化的天气模型。即使是模型初始条件的微小差异也可能导致天气预报的大范围差异(也就是所谓的蝴蝶效应)。尽管如此,人们普遍认为,虽然个别预测可能会有所不同,但动态的总体情况保持不变,并且可以进行数值模拟。在洛伦兹的例子中,全球天气模式是由洛伦兹蝴蝶吸引子描述的,这是一个定义明确的数学对象。它很容易计算(事实上,这张照片已经变得很有名)。在最近的一系列工作中,我们测试了简单动力系统的吸引子可以在计算机上建模的直观假设。令人惊讶的是,对于一个典型的家庭,被称为朱莉娅集,这通常是错误的。这项工作打开了一章的研究,这是重要的从业人员,以及理论动力学家和计算机科学家。我的建议列出了进一步研究这些具有挑战性的问题的计划。一个相关的主题是研究从动力系统的复杂行为中出现的普遍规律。这种普遍性在物理学中是众所周知的。它们可以被理解为一种自组织机制,它产生于混沌行为。也许其中最著名的例子是一维动力系统中的Feigenbaum型普适性,在过去的三十年里,这一问题得到了广泛的研究。这些研究建立了一个新的领域,称为重整化理论,它彻底改变了动力学的研究。在一系列的论文中,我完全解决了一维普适性的两个主要情况之一(临界圆映射的兰福德普适性)。我的建议概述了一个研究一维动力学普适性的计划
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yampolsky, Michael其他文献
Exploring the impact of HIV infection and antiretroviral therapy on placenta morphology
- DOI:
10.1016/j.placenta.2020.12.004 - 发表时间:
2021-01-15 - 期刊:
- 影响因子:3.8
- 作者:
Yampolsky, Michael;Shlakhter, Oleksandr;Serghides, Lena - 通讯作者:
Serghides, Lena
Yampolsky, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yampolsky, Michael', 18)}}的其他基金
Rigidity, Universality, and Complexity in Dynamics
动力学的刚性、普遍性和复杂性
- 批准号:
RGPIN-2018-04426 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Rigidity, Universality, and Complexity in Dynamics
动力学的刚性、普遍性和复杂性
- 批准号:
RGPIN-2018-04426 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Rigidity, Universality, and Complexity in Dynamics
动力学的刚性、普遍性和复杂性
- 批准号:
RGPIN-2018-04426 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Rigidity, Universality, and Complexity in Dynamics
动力学的刚性、普遍性和复杂性
- 批准号:
RGPIN-2018-04426 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Rigidity, Universality, and Complexity in Dynamics
动力学的刚性、普遍性和复杂性
- 批准号:
RGPIN-2018-04426 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Complexity and Universality in Dynamics
动力学的复杂性和普遍性
- 批准号:
238947-2013 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Complexity and Universality in Dynamics
动力学的复杂性和普遍性
- 批准号:
238947-2013 - 财政年份:2015
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Complexity and Universality in Dynamics
动力学的复杂性和普遍性
- 批准号:
238947-2013 - 财政年份:2014
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Complexity and Universality in Dynamics
动力学的复杂性和普遍性
- 批准号:
238947-2013 - 财政年份:2013
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Complexity and universality in dynamics
动力学的复杂性和普遍性
- 批准号:
238947-2011 - 财政年份:2012
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Rigidity, Universality, and Complexity in Dynamics
动力学的刚性、普遍性和复杂性
- 批准号:
RGPIN-2018-04426 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Rigidity, Universality, and Complexity in Dynamics
动力学的刚性、普遍性和复杂性
- 批准号:
RGPIN-2018-04426 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Rigidity, Universality, and Complexity in Dynamics
动力学的刚性、普遍性和复杂性
- 批准号:
RGPIN-2018-04426 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Rigidity, Universality, and Complexity in Dynamics
动力学的刚性、普遍性和复杂性
- 批准号:
RGPIN-2018-04426 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Rigidity, Universality, and Complexity in Dynamics
动力学的刚性、普遍性和复杂性
- 批准号:
RGPIN-2018-04426 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Complexity and Universality in Dynamics
动力学的复杂性和普遍性
- 批准号:
238947-2013 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Complexity and Universality in Dynamics
动力学的复杂性和普遍性
- 批准号:
238947-2013 - 财政年份:2015
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Complexity and Universality in Dynamics
动力学的复杂性和普遍性
- 批准号:
238947-2013 - 财政年份:2014
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Complexity and Universality in Dynamics
动力学的复杂性和普遍性
- 批准号:
238947-2013 - 财政年份:2013
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Complexity and universality in dynamics
动力学的复杂性和普遍性
- 批准号:
238947-2011 - 财政年份:2012
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual