Reliability in finite element method for higher dimensional space problems

高维空间问题的有限元方法的可靠性

基本信息

  • 批准号:
    229809-2011
  • 负责人:
  • 金额:
    $ 0.73万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Mathematical modeling plays an essential role in science and engineering. Costly and time-consuming experiments are replaced by computational analysis. In industry, commercial codes are widely used. They are flexible and can be adjusted for solving specific problems of interest. Solving large problems with tens or hundreds of thousands of unknowns becomes routine. The objective of computational analysis is to predict the behavior of the engineering and physical reality usually within the constraints of cost and time. Today, human and time costs are more important than computer costs. This trend will continue into the future.Agreement between computational results and reality is related to two factors, namely the mathematical formulation of the problems and the accuracy of the numerical solution. The accuracy has to be understood in the context of the aim of the analysis. A small error in an inappropriate norm does not necessarily mean that the computed results are usable for practical purposes. Analyzing the same engineering problem by different methods could sometimes lead to results that differ significantly. This could be caused by various factors, e.g., different models in mathematical formulations were used or the numerical solution does not approximate the data of interest well. This can happen especially when various modern adaptive codes with a posteriori error estimation are used. Obviously, to understand the reasons for such discrepancies is very important. Decisions in engineering are still made by humans and not by computers, although computers are the main tools. It is necessary to realize that the computer always provides data, color graphs or movies, correct or incorrect. Hence, to understand the basic mathematical background of the modeling is of major importance. The main objective of my research is to contribute significantly to the creative assessment of whether the numbers provided by computers are reliable and trustworthy as the basis for crucial engineering decisions.
数学建模在科学和工程中起着至关重要的作用。昂贵和耗时的实验被计算分析所取代。在工业中,商用代码被广泛使用。它们是灵活的,可以进行调整,以解决感兴趣的具体问题。解决具有数万或数十万个未知数的大型问题变得司空见惯。计算分析的目的是预测工程和物理现实的行为,通常在成本和时间的约束下。今天,人力和时间成本比计算机成本更重要。计算结果与实际情况的一致性与两个因素有关,即问题的数学表述和数值解的精度。准确性必须在分析目的的背景下理解。在不适当的范数中的小误差并不一定意味着计算结果可用于实际目的。用不同的方法分析同一个工程问题有时会导致结果有很大的不同。这可能是由各种因素引起的,例如,使用了数学公式中的不同模型,或者数值解不能很好地近似感兴趣的数据。当使用具有后验误差估计的各种现代自适应码时,尤其可能发生这种情况。显然,理解这种差异的原因是非常重要的。尽管计算机是主要的工具,但工程决策仍然是由人类而不是计算机做出的。有必要认识到,计算机总是提供数据,彩色图表或电影,正确或不正确。因此,了解建模的基本数学背景是非常重要的。我的研究的主要目标是大大有助于创造性地评估计算机提供的数字是否可靠和值得信赖的关键工程决策的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liu, Liping其他文献

Multivariate setup adjustment with fixed adjustment cost
具有固定调整成本的多变量设置调整
Species composition and health risk assessment of arsenic in Agaricus blazei Murrill and Tricholoma matsutake from Yunnan Province, China
Pyrotinib in combination with letrozole for hormone receptor-positive, human epidermal growth factor receptor 2-positive metastatic breast cancer (PLEHERM): a multicenter, single-arm, phase II trial.
  • DOI:
    10.1186/s12916-023-02943-2
  • 发表时间:
    2023-06-26
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Hu, Zhe-Yu;Yan, Min;Xiong, Huihua;Ran, Li;Zhong, Jincai;Luo, Ting;Sun, Tao;Xie, Ning;Liu, Liping;Yang, Xiaohong;Xiao, Huawu;Li, Jing;Liu, Binliang;Ouyang, Quchang
  • 通讯作者:
    Ouyang, Quchang
The synthesis of hierarchical high-silica beta zeolites in NaF media.
  • DOI:
    10.1039/c8ra09347d
  • 发表时间:
    2019-01-25
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Xiong, Guang;Feng, Miaomiao;Liu, Jiaxu;Meng, Qingrun;Liu, Liping;Guo, Hongchen
  • 通讯作者:
    Guo, Hongchen
Can Artificial Sweeteners Increase the Risk of Cancer Incidence and Mortality: Evidence from Prospective Studies.
人造甜味剂可以增加癌症发病率和死亡率的风险:前瞻性研究的证据。
  • DOI:
    10.3390/nu14183742
  • 发表时间:
    2022-09-10
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Yan, Shoumeng;Yan, Feifei;Liu, Liping;Li, Bo;Liu, Shuxiang;Cui, Weiwei
  • 通讯作者:
    Cui, Weiwei

Liu, Liping的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liu, Liping', 18)}}的其他基金

Reliability in finite element method for higher dimensional space problems
高维空间问题的有限元方法的可靠性
  • 批准号:
    229809-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual
Reliability in finite element method for higher dimensional space problems
高维空间问题的有限元方法的可靠性
  • 批准号:
    229809-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual
Reliability in finite element method for higher dimensional space problems
高维空间问题的有限元方法的可靠性
  • 批准号:
    229809-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual
Reliability in finite element method for higher dimensional space problems
高维空间问题的有限元方法的可靠性
  • 批准号:
    229809-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual
The finite element method for higher dimensional problems
高维问题的有限元方法
  • 批准号:
    229809-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual
Reliability problems in the finite element method in 2 D and 3 D and optical control
2D、3D有限元法及光学控制中的可靠性问题
  • 批准号:
    229809-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual
Reliability problems in the finite element method in 2 D and 3 D and optical control
2D、3D有限元法及光学控制中的可靠性问题
  • 批准号:
    229809-2005
  • 财政年份:
    2008
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual
Reliability problems in the finite element method in 2 D and 3 D and optical control
2D、3D有限元法及光学控制中的可靠性问题
  • 批准号:
    229809-2005
  • 财政年份:
    2007
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual
Reliability problems in the finite element method in 2 D and 3 D and optical control
2D、3D有限元法及光学控制中的可靠性问题
  • 批准号:
    229809-2005
  • 财政年份:
    2006
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual
Reliability problems in the finite element method in 2 D and 3 D and optical control
2D、3D有限元法及光学控制中的可靠性问题
  • 批准号:
    229809-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Whitham调制理论在色散方程间断初值问题中的应用
  • 批准号:
    12001556
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Reliability in finite element method for higher dimensional space problems
高维空间问题的有限元方法的可靠性
  • 批准号:
    229809-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual
Reliability in finite element method for higher dimensional space problems
高维空间问题的有限元方法的可靠性
  • 批准号:
    229809-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual
Reliability in finite element method for higher dimensional space problems
高维空间问题的有限元方法的可靠性
  • 批准号:
    229809-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual
Reliability in finite element method for higher dimensional space problems
高维空间问题的有限元方法的可靠性
  • 批准号:
    229809-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual
Increased Reliability for Industrially Relevant Automatic Crack Growth Simulation with the eXtended Finite Element Method
使用扩展有限元方法提高工业相关自动裂纹扩展模拟的可靠性
  • 批准号:
    EP/G042705/1
  • 财政年份:
    2010
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Research Grant
Reliability problems in the finite element method in 2 D and 3 D and optical control
2D、3D有限元法及光学控制中的可靠性问题
  • 批准号:
    229809-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual
Reliability problems in the finite element method in 2 D and 3 D and optical control
2D、3D有限元法及光学控制中的可靠性问题
  • 批准号:
    229809-2005
  • 财政年份:
    2008
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual
Finite element reliability and sensitivity methods for performance-based seismic design
基于性能的抗震设计的有限元可靠性和灵敏度方法
  • 批准号:
    298284-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual
Reliability problems in the finite element method in 2 D and 3 D and optical control
2D、3D有限元法及光学控制中的可靠性问题
  • 批准号:
    229809-2005
  • 财政年份:
    2007
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual
Finite element reliability and sensitivity methods for performance-based seismic design
基于性能的抗震设计的有限元可靠性和灵敏度方法
  • 批准号:
    298284-2004
  • 财政年份:
    2007
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了