Space Division Multiplexing
空分复用
基本信息
- 批准号:RGPIN-2014-06197
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this proposal is to build a world-class program on space-division multiplexing (SDM) using multicore optical fibers, in order to shape next-generation, terabit-per-second capacity (10e12 bits/s) ultra-dense optical interconnects. We will design, make and test multicore optical fibers and coupling devices compatible with the established technology of two dimensional arrays of high-speed vertical-cavity surface-emission lasers (VCSELs) for the development of active optical cables with dramatically expanded capacity. In recent decades, we have witnessed an incredible revolution in communications and computing based on the advancement of optical fibers, photonic devices and electronic circuits. While single-mode fibers and wavelength division multiplexing (WDM) historically offered plenty of transmission capacity for long-haul and metro networks, the new applications for optical networks, such as machine interconnectivity and local area networks, require both large capacity per fiber core and increased core spatial density. The electronics industry is presently experiencing communications bottlenecks in integrated circuits, and this is particularly evident in inter-chip communications (e.g., between microprocessor and memory, and between multiple microprocessors). Short-reach optical interconnects, which typically span up to a few hundred meters, overcome the bottleneck of electrical interconnects caused by heat dissipation and size congestion: high-performance super computers manufactured in 2013 use more than 10e5 lasers typically; the IBM Blue Water super-computer uses over 1 million optical channels! In computing systems, space is a major concern. However, the benefits of very short reach optical interconnects (less than 1 meter long) still have to be established for inter-chip data communications and core-to-core on-chip communications. Can more space-efficient optical links be engineered, versus using the conventional single-core optical fiber?Recent developments in fiber-optic fabrication techniques have triggered interest in multicore optical fibers to increase spatial density by building several guiding cores in a single fiber of the same diameter. Record transmission capacity of 1.01 petabit-per-second (10e15 bits/s) was demonstrated in 2012 by Japanese researchers at NTT using such a 12-core fiber. The research program will transpose this achievement to optical interconnects by developing customized multicore fiber, active and passive coupling devices, circuits, and architectures to replace the less space-efficient fiber ribbons currently used in the industry. The new optical interconnects will be able to carry independent channels in several tens of guiding cores, thus permitting near terabit/s capacity over a single fiber using 25-Gb/s VCSELs. Our group is already equipped with the necessary design tools, has contributed to the concept of SDM for optical interconnects, has set key Canadian and international collaborations for multicore fiber sourcing, and benefits from world-class laboratory facilities. The proposed research program will contribute to the development of synergies between electronic and photonic integration technologies, which will result in revolutionary changes in photonics manufacturing that will dramatically change design principles and fundamentally improve performance. Canada is a world leader in Information and Communications Technologies (ICT). The proposed research directly supports Canada's strategic priorities in ICT Device and Systems (as stated in NSERC selected Target Areas and Research Topics), by the development of technologies that will dramatically increase the spatial density of optical links.
该提案的研究目标是建立一个世界级的计划,空分复用(SDM)使用多芯光纤,以塑造下一代,太比特每秒容量(10 e12位/秒)的超密集光互连。我们将设计、制造和测试与高速垂直腔面发射激光器(VCSEL)二维阵列的现有技术兼容的多芯光纤和耦合器件,以开发具有大幅扩展容量的有源光缆。近几十年来,我们目睹了通信和计算领域的一场令人难以置信的革命,这场革命是基于光纤、光子器件和电子电路的进步。虽然单模光纤和波分复用(WDM)在历史上为长途和城域网提供了大量的传输容量,但光网络的新应用,如机器互连和局域网,需要每个光纤芯的大容量和增加的芯空间密度。电子工业目前正经历集成电路中的通信瓶颈,并且这在芯片间通信(例如,微处理器和存储器之间以及多个微处理器之间)。短距离光互连通常跨度达几百米,克服了散热和尺寸拥挤造成的电互连瓶颈:2013年制造的高性能超级计算机通常使用超过10 e5激光器; IBM蓝水超级计算机使用超过100万个光通道!在计算系统中,空间是一个主要的问题。然而,对于芯片间数据通信和核到核的片上通信,仍然必须建立非常短距离的光学互连(小于1米长)的益处。与使用传统的单芯光纤相比,能否设计出更节省空间的光链路?光纤制造技术的最新发展已经引发了对多芯光纤的兴趣,以通过在相同直径的单个光纤中构建若干引导芯来增加空间密度。2012年,NTT的日本研究人员使用这种12芯光纤展示了每秒1.01拍比特(10 e15比特/秒)的创纪录传输容量。该研究计划将通过开发定制的多芯光纤、有源和无源耦合器件、电路和架构,将这一成果转化为光互连,以取代目前行业中使用的空间效率较低的光纤带。新的光学互连将能够在几十个引导核心中承载独立的通道,从而允许使用25 Gb/s VCSEL的单根光纤上的近太比特/秒容量。我们的团队已经配备了必要的设计工具,为光互连的SDM概念做出了贡献,为多芯光纤采购建立了重要的加拿大和国际合作,并受益于世界一流的实验室设施。拟议的研究计划将有助于电子和光子集成技术之间的协同作用的发展,这将导致光子制造的革命性变化,这将大大改变设计原则并从根本上提高性能。加拿大在信息和通信技术(ICT)方面处于世界领先地位。拟议的研究直接支持加拿大在ICT设备和系统的战略优先事项(如NSERC选定的目标领域和研究主题所述),通过开发将大大增加光链路空间密度的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
François, Véronique其他文献
François, Véronique的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('François, Véronique', 18)}}的其他基金
Space Division Multiplexing
空分复用
- 批准号:
RGPIN-2014-06197 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Space Division Multiplexing
空分复用
- 批准号:
RGPIN-2014-06197 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Space Division Multiplexing
空分复用
- 批准号:
RGPIN-2014-06197 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Space Division Multiplexing
空分复用
- 批准号:
RGPIN-2014-06197 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Investigation of vertical-cavity-laser relative intensity noise as a criterion for acceptance testing
作为验收测试标准的垂直腔激光相对强度噪声的研究
- 批准号:
435197-2012 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Fibres microstructurées pour à fonctions optiques multiples pour les dispositifs photoniques
纤维微观结构和光学功能多重光学配置
- 批准号:
293279-2004 - 财政年份:2009
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Fibres microstructurées pour à fonctions optiques multiples pour les dispositifs photoniques
纤维微观结构和光学功能多重光学配置
- 批准号:
293279-2004 - 财政年份:2008
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Fibres microstructurées pour à fonctions optiques multiples pour les dispositifs photoniques
纤维微观结构和光学功能多重光学配置
- 批准号:
293279-2004 - 财政年份:2007
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Fibres microstructurées pour à fonctions optiques multiples pour les dispositifs photoniques
纤维微观结构和光学功能多重光学配置
- 批准号:
293279-2004 - 财政年份:2006
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Fibres microstructurées pour à fonctions optiques multiples pour les dispositifs photoniques
纤维微观结构和光学功能多重光学配置
- 批准号:
293279-2004 - 财政年份:2005
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Massive Space Division Multiplexing for Optical Fibre Communication Systems
光纤通信系统的大规模空分复用
- 批准号:
2741046 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Studentship
Multi-Band Transmission over Space-Division Multiplexing Optical Fibers
空分复用光纤上的多频带传输
- 批准号:
21K14165 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study on high-order multiplexing of radio-over-fiber transmission using wavelength- and space-division-multiplexing
利用波分和空分复用的无线电光纤传输高阶复用研究
- 批准号:
21H01331 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a calibrated phase-shifting digital holography based on space-division multiplexing
基于空分复用的校准相移数字全息术的研制
- 批准号:
19K15003 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research on spatial optical switching technologies to achieve ultra-large capacity, space division multiplexing optical networks
空间光交换技术研究,实现超大容量空分复用光网络
- 批准号:
18H01443 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Space Division Multiplexing
空分复用
- 批准号:
RGPIN-2014-06197 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Research on Space Division Multiplexing Elastic Optical Network Control and Cooperative Application Infrastructure for Distributed Edge Nodes
分布式边缘节点空分复用弹性光网络控制与协同应用基础设施研究
- 批准号:
17H00734 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of Advanced Space Division Multiplexing Technologies Enabling Next-Generation Optical Communications System
先进空分复用技术的发展支持下一代光通信系统
- 批准号:
453988-2014 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Postdoctoral Fellowships
Fiber-Optic Communication with Nonlinear Interference and Space Division Multiplexing
具有非线性干扰和空分复用的光纤通信
- 批准号:
320729232 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Research Grants
Space Division Multiplexing
空分复用
- 批准号:
RGPIN-2014-06197 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual