Open microfluidics platforms for the in vitro assessment of drug transport in microtumour samples
用于体外评估微肿瘤样品中药物转运的开放微流体平台
基本信息
- 批准号:RGPIN-2014-06409
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
How to find the right treatment for a patient suffering from advanced cancer? In the century of genomics, there has been a growing awareness among clinicians that tumors are highly patient-specific and likely to have different sensitivities to different types of anti-cancer drugs. Given that the therapeutic effects of most drugs can only be felt after several weeks, identifying non-responders early in a treatment should greatly reduce side-effects and save costs associated with no clinical benefit. To prescribe the right drugs to a given patient, clinicians today use biomarkers to statistically correlate the outcome of a treatment with the patient’s genetic/epigenetic profile. Over the past years another promising approach to tailor treatments to patients has emerged: the direct in vitro assessment of drug response on samples from the patient’s own tumor trapped or grown in a network of miniature channels only fractions of a millimeter in diameter. In these microfluidic systems, or lab-on-a-chip, microscopic tumor samples can be trapped or tissue-engineered in 3D to recover some of the features of in vivo tissues. Many argue that they are in this sense superior to 2D cultures in petri dishes to study the response of cells to drugs as the latter neglect an important aspect of tumors: the biochemical transport limitations of drugs, oxygen, nutrients, cytokines and other analytes in complex 3D cellular architectures. Biochemical transport science in microfluidic systems is our primary scientific expertise. It deals with the study of advection, diffusion, and reactions of particles and molecules submitted to various forces in miniature channels. The solution to many technological challenges in lab-on-a-chip applications, including kinetics measurements in surface-based sensors and efficient separation in protein or DNA analysis, has been made possible through systematic understanding of mass transfer properties at the microscale. Since microfluidics allow for the precise control of the tumor microenvironment, it is poised to play a major role in the development of drug discovery platforms employing 3D in vitro models as efficient surrogates for in vivo testing in mouse models. It is the very challenge of bringing this vision to reality that we are describing in this proposal. The long term research goals of this research program is two-fold. On a fundamental level, we will seek to develop a detailed understanding of mass transport in lab-on-a-chip systems, with a focus on transport inside an around 3D biological samples trapped in microfluidics systems to understand how tumors respond to drugs. On a more applied, engineering level, we will use advanced transport concepts, numerical simulations, microfabrication and cell and tissue culture techniques to design fast analytical tools to speed up biological and medical data acquisition by integrating all steps of tumor analysis onto a chip. To achieve this goal, we will propose to break down the problem in three main objectives to be pursued as three parallel independent projects for Ph. D. students: i) Systematic exploration of advective/diffusive transport in open microfluidic geometries; ii) Modeling of analyte transport in and around spheroids and cancer tissue microsections and its effect on tumor chemoresponse ; iii) Systematic investigation of the effect of growth conditions on spheroid sizes. Through the proposed projects, we will train outstanding students at the interface between engineering and cancer biology, we will collaborate with clinicians to develop our technologies with the end user in mind, and, above all, we will strive to have a lasting impact in the way cancer patients are being treated to improve their general quality of life.
如何为晚期癌症患者找到正确的治疗方法?在基因组学的世纪里,临床医生越来越意识到肿瘤具有高度的患者特异性,并且可能对不同类型的抗癌药物具有不同的敏感性。鉴于大多数药物的治疗效果要在几周后才能感受到,在治疗早期确定无反应者应该会极大地减少副作用,并节省与临床没有好处相关的成本。为了给给定的患者开出正确的药物,现在的临床医生使用生物标记物在统计上将治疗结果与患者的遗传/表观遗传学特征相关联。在过去的几年里,出现了另一种有希望的针对患者量身定做的治疗方法:对患者自身肿瘤样本进行直接体外药物反应评估,这些样本被困在直径仅为一毫米的微小通道网络中或生长在其中。在这些微流控系统或芯片实验室中,微观的肿瘤样本可以被捕获或在3D中进行组织工程,以恢复体内组织的一些特征。许多人认为,在这个意义上,他们在培养皿中研究细胞对药物的反应优于2D培养,因为后者忽略了肿瘤的一个重要方面:药物、氧气、营养物质、细胞因子和其他分析物在复杂的3D细胞结构中的生化运输限制。微流控系统中的生化传输科学是我们的主要科学专长。它研究微粒和分子在微小通道中受各种力作用时的平流、扩散和反应。芯片实验室应用中的许多技术挑战的解决方案,包括基于表面的传感器的动力学测量和蛋白质或DNA分析的有效分离,已经通过系统地了解微尺度的传质特性而成为可能。由于微流体可以精确控制肿瘤微环境,它有望在药物发现平台的开发中发挥重要作用,该平台采用3D体外模型作为在小鼠模型体内测试的有效替代品。我们在这项提案中描述的正是将这一愿景变为现实的挑战。这项研究计划的长期研究目标是双重的。在根本层面上,我们将寻求对芯片实验室系统中的质量传输进行详细的了解,重点是在微流控系统中捕获的大约3D生物样本内的传输,以了解肿瘤对药物的反应。在更实用的工程层面上,我们将使用先进的运输概念、数值模拟、微制造以及细胞和组织培养技术来设计快速分析工具,通过将肿瘤分析的所有步骤集成到一个芯片上来加快生物和医学数据的采集。为了实现这一目标,我们将建议将问题分解为三个主要目标,作为三个平行的独立博士生项目:i)系统地探索开放微流体几何结构中的平流/扩散传输;ii)球体内和周围的分析物传输的建模及其对肿瘤化学反应的影响;iii)生长条件对球体大小的影响的系统研究。通过拟议的项目,我们将培养工程学和癌症生物学之间的优秀学生,我们将与临床医生合作,以最终用户为中心开发我们的技术,最重要的是,我们将努力对癌症患者的治疗方式产生持久的影响,以提高他们的总体生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gervais, Thomas其他文献
Large-Scale Dried Reagent Reconstitution and Diffusion Control Using Microfluidic Self-Coalescence Modules
- DOI:
10.1002/smll.202105939 - 发表时间:
2022-03-20 - 期刊:
- 影响因子:13.3
- 作者:
Gervais, Thomas;Temiz, Yuksel;Delamarche, Emmanuel - 通讯作者:
Delamarche, Emmanuel
Microfluidic multipoles theory and applications
- DOI:
10.1038/s41467-019-09740-7 - 发表时间:
2019-04-16 - 期刊:
- 影响因子:16.6
- 作者:
Goyette, Pierre-Alexandre;Boulais, Etienne;Gervais, Thomas - 通讯作者:
Gervais, Thomas
Pixel-based open-space microfluidics for versatile surface processing
- DOI:
10.1073/pnas.2019248118 - 发表时间:
2021-01-12 - 期刊:
- 影响因子:11.1
- 作者:
Goyette, Pierre-Alexandre;Boulais, Etienne;Gervais, Thomas - 通讯作者:
Gervais, Thomas
Gervais, Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gervais, Thomas', 18)}}的其他基金
High throughput liquid handling platform using open-space microfluidics
使用开放空间微流体的高通量液体处理平台
- 批准号:
RTI-2023-00282 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Research Tools and Instruments
Advanced reagent delivery systems for microfluidics
用于微流体的先进试剂输送系统
- 批准号:
RGPIN-2020-06838 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Advanced reagent delivery systems for microfluidics
用于微流体的先进试剂输送系统
- 批准号:
DGDND-2020-06838 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Advanced reagent delivery systems for microfluidics
用于微流体的先进试剂输送系统
- 批准号:
DGDND-2020-06838 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Advanced reagent delivery systems for microfluidics
用于微流体的先进试剂输送系统
- 批准号:
RGPIN-2020-06838 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Advanced reagent delivery systems for microfluidics
用于微流体的先进试剂输送系统
- 批准号:
RGPIN-2020-06838 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Sciences & médias : l'essentiel pour des communications réussies
科学
- 批准号:
555953-2020 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Science Communication Skills Grant
Advanced reagent delivery systems for microfluidics
用于微流体的先进试剂输送系统
- 批准号:
DGDND-2020-06838 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Open microfluidics platforms for the in vitro assessment of drug transport in microtumour samples
用于体外评估微肿瘤样品中药物转运的开放微流体平台
- 批准号:
RGPIN-2014-06409 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Open microfluidics platforms for the in vitro assessment of drug transport in microtumour samples
用于体外评估微肿瘤样品中药物转运的开放微流体平台
- 批准号:
RGPIN-2014-06409 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
超声行波微流体驱动机理的试验研究
- 批准号:51075243
- 批准年份:2010
- 资助金额:39.0 万元
- 项目类别:面上项目
相似海外基金
Fixed-Target Platforms for Time-Resolved Crystallography
用于时间分辨晶体学的固定目标平台
- 批准号:
10634328 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Develop accurate high-coverage and high-throughput single-cell Duplex-seq chemistry and multi-omics platforms for simultaneous profiling of somatic mutation and the transcriptome in single human cells
开发准确的高覆盖率和高通量单细胞 Duplex-seq 化学和多组学平台,用于同时分析单个人类细胞中的体细胞突变和转录组
- 批准号:
10662693 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Integrated Electrochemical Aptamer Based Platforms for the Point-of-Care and Continuous Monitoring of Clinically Relevant Analytes
基于集成电化学适体的平台,用于临床相关分析物的护理点和连续监测
- 批准号:
10538257 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Integrated Electrochemical Aptamer Based Platforms for the Point-of-Care and Continuous Monitoring of Clinically Relevant Analytes
基于集成电化学适体的平台,用于临床相关分析物的护理点和连续监测
- 批准号:
10705637 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Engineering multifaceted 3D human organ platforms for toxicity testing
设计用于毒性测试的多层面 3D 人体器官平台
- 批准号:
10675647 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Engineering multifaceted 3D human organ platforms for toxicity testing
设计用于毒性测试的多层面 3D 人体器官平台
- 批准号:
10275117 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Engineering multifaceted 3D human organ platforms for toxicity testing
设计用于毒性测试的多层面 3D 人体器官平台
- 批准号:
10493263 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Microfluidic platforms to generate 'off-the-shelf' fratricide-resistant CAR T cells for T-cell malignancies
微流体平台可生成用于 T 细胞恶性肿瘤的“现成”抗自相残杀 CAR T 细胞
- 批准号:
10317102 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Paper-based and capillary-driven microfluidics platforms for allergy tests
用于过敏测试的纸基和毛细管驱动的微流体平台
- 批准号:
516525-2017 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Collaborative Research and Development Grants
Pillar and perfusion well plate platforms for reproducible organoid culture from iPSC
用于从 iPSC 进行可重复类器官培养的支柱和灌注孔板平台
- 批准号:
10080406 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别: