Novel mechanisms of strain energy dissipation in collagen polymers: their characterization, control, and application
胶原聚合物应变能耗散的新机制:其表征、控制和应用
基本信息
- 批准号:RGPIN-2014-04967
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Toughness is a highly desirable material property, combining both strength and fracture resistance. In addition to being very strong, tough materials can also undergo considerable deformation before breaking. Ongoing research to create tough materials has led to the development of a wide variety of metallic alloys and engineered composites. However, the toughness of these materials is achieved through a limited number of “toughening mechanisms”, most of which we have known about for decades. Because toughness is such a desirable material property, identifying new toughening mechanisms could drive the development of a wide range of new engineering materials. The aim of this research program is to identify new toughening mechanisms by studying a remarkable biomaterial: the collagen fibril. Collagen fibrils are the most common—and important—structural biomaterial within humans and almost all other animals. Collagen fibrils are biological cables that are nearly 1000 times smaller in diameter than a human hair. They are what gives strength to your tendons, ligaments, bones, skin, arteries, heart valves, cartilage, and more. In addition to being very strong, collagen fibrils are also very tough: approximately 10 times tougher than steel wire. Yet, despite their incredible material properties, the toughening mechanisms that function within collagen fibrils have not yet been identified.In the first part of this research program, the nanoscale structure of both collagen fibrils and the molecules that they are composed of will be studied before and after mechanical overload. Using tools such as transmission electron microscopy, with which magnifications of up to 300,000x are possible, we will attempt to determine what makes collagen fibrils tough. In the second part of the research program, we will study different types of collagen fibrils to try and determine: (i) if some fibrils are tougher than others, and (ii) if so, what structural characteristics account for this difference. We will also chemically modify collagen fibrils, artificially joining or breaking apart the collagen molecules contained within to see how these changes alter toughness. In the final part of this research program, we will use the information that we have gathered in parts one and two to build new, high-performance, biodegradable materials. We will work toward building new bandages and wound dressings that are soft and bendable when applied, but then harden giving superior protection to the healing tissue beneath. We will also work toward building new composite materials by impregnating collagen fibrils with minerals. We will use these new composite materials to develop new, resorbable surgical implants. For repairing a badly fractured bone, for example, a collagen-based implant could provide the structural support required during healing and then slowly disappear, being broken down and absorbed by the body.While this work will take many years to complete, the results, even from the project’s early stages, will be important to many people. Tissue engineers will be able to use our results to improve the mechanical performance of their laboratory-built tendons, ligaments, skin, and arteries. Discovering ways to make these engineered tissues tougher would help bring them to market, benefiting the thousands of Canadians each year who require surgeries involving artificial or allograft tissue. After learning what happens to collagen fibrils and their molecules when overloaded, doctors and surgeons may think of better ways to treat sprains and strains, or ways to accelerate connective tissue healing. And finally, material scientists may be able to use the unique toughening mechanisms that we discover to develop a whole range of new materials for everyday use.
韧性是一种非常理想的材料性能,兼具强度和抗断裂性能。除了非常坚固之外,坚韧的材料在断裂之前也会经历相当大的变形。正在进行的创造坚韧材料的研究已经导致了各种金属合金和工程复合材料的发展。然而,这些材料的韧性是通过有限数量的“增韧机制”实现的,其中大部分我们几十年前就知道了。由于韧性是一种非常理想的材料特性,因此,确定新的增韧机制可以推动一系列新工程材料的发展。这项研究计划的目的是通过研究一种非凡的生物材料:胶原纤维来确定新的增韧机制。胶原纤维是人类和几乎所有其他动物中最常见也是最重要的结构生物材料。胶原蛋白纤维是一种生物电缆,直径几乎是人类头发的1000倍。它们给你的肌腱、韧带、骨骼、皮肤、动脉、心脏瓣膜、软骨等提供力量。除了非常坚固,胶原纤维也非常坚韧:大约比钢丝坚韧10倍。然而,尽管它们具有令人难以置信的材料特性,但在胶原纤维中发挥作用的增韧机制尚未被识别。在本研究计划的第一部分,将研究机械过载前后胶原纤维及其组成分子的纳米结构。使用诸如透射式电子显微镜之类的工具,我们将尝试确定是什么使胶原纤维变得坚韧。在研究计划的第二部分,我们将研究不同类型的胶原纤维,试图确定:(I)某些纤维是否比其他纤维更坚韧,以及(Ii)如果是,是什么结构特征导致了这种差异。我们还将对胶原纤维进行化学修饰,人工连接或分离包含在其中的胶原分子,看看这些变化是如何改变韧性的。在这个研究计划的最后部分,我们将使用我们在第一部分和第二部分中收集的信息来构建新的、高性能的、可生物降解的材料。我们将致力于建造新的绷带和伤口敷料,这些绷带和伤口敷料在使用时是柔软和可弯曲的,但随后会变硬,为下面的愈合组织提供更好的保护。我们还将致力于通过在胶原纤维中浸渍矿物质来构建新的复合材料。我们将使用这些新的复合材料开发新的、可吸收的外科植入物。例如,对于严重骨折的骨骼的修复,基于胶原蛋白的植入物可以提供愈合过程中所需的结构支持,然后慢慢消失,被身体分解和吸收。虽然这项工作需要多年的时间才能完成,但结果,即使是在项目的早期阶段,对许多人来说也是重要的。组织工程师将能够利用我们的结果来改善他们实验室建造的肌腱、韧带、皮肤和动脉的机械性能。找到让这些工程组织变得更坚韧的方法,将有助于将它们推向市场,使每年数以千计的加拿大人受益,他们需要接受涉及人造或同种异体组织的手术。在了解了超负荷时胶原纤维及其分子会发生什么之后,医生和外科医生可能会想出更好的方法来治疗扭伤和拉伤,或者加速结缔组织的愈合。最后,材料科学家可能能够使用我们发现的独特的增韧机制来开发一系列日常使用的新材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Veres, Samuel其他文献
Veres, Samuel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Veres, Samuel', 18)}}的其他基金
Development, control, and functional significance of variations in collagen fibril nanostructure, with application to the creation of novel biomaterials
胶原纤维纳米结构变化的开发、控制和功能意义,及其在新型生物材料创建中的应用
- 批准号:
RGPIN-2020-06035 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Development, control, and functional significance of variations in collagen fibril nanostructure, with application to the creation of novel biomaterials
胶原纤维纳米结构变化的开发、控制和功能意义,及其在新型生物材料创建中的应用
- 批准号:
RGPIN-2020-06035 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Development, control, and functional significance of variations in collagen fibril nanostructure, with application to the creation of novel biomaterials
胶原纤维纳米结构变化的开发、控制和功能意义,及其在新型生物材料创建中的应用
- 批准号:
RGPIN-2020-06035 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Novel mechanisms of strain energy dissipation in collagen polymers: their characterization, control, and application
胶原聚合物应变能耗散的新机制:其表征、控制和应用
- 批准号:
RGPIN-2014-04967 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Novel mechanisms of strain energy dissipation in collagen polymers: their characterization, control, and application
胶原聚合物应变能耗散的新机制:其表征、控制和应用
- 批准号:
RGPIN-2014-04967 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Novel mechanisms of strain energy dissipation in collagen polymers: their characterization, control, and application
胶原聚合物应变能耗散的新机制:其表征、控制和应用
- 批准号:
RGPIN-2014-04967 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Novel mechanisms of strain energy dissipation in collagen polymers: their characterization, control, and application
胶原聚合物应变能耗散的新机制:其表征、控制和应用
- 批准号:
RGPIN-2014-04967 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Novel mechanisms of strain energy dissipation in collagen polymers: their characterization, control, and application
胶原聚合物应变能耗散的新机制:其表征、控制和应用
- 批准号:
RGPIN-2014-04967 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
- 批准号:82371255
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
- 批准号:82370979
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
- 批准号:82370981
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
- 批准号:82370851
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
- 批准号:82372015
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
- 批准号:82371248
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
- 批准号:82371973
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
相似海外基金
Developing novel pyrazolidinone antibiotics targeting PBP3 to overcome resistance mechanisms
开发针对 PBP3 的新型吡唑烷酮抗生素以克服耐药机制
- 批准号:
10590839 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Screening Repurposing Libraries for the Identification of Drugs with Novel anti-Coccidioidal Activity
筛选再利用文库以鉴定具有新型抗球虫活性的药物
- 批准号:
10541230 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Screening Repurposing Libraries for the Identification of Drugs with Novel anti-Coccidioidal Activity
筛选再利用文库以鉴定具有新型抗球虫活性的药物
- 批准号:
10363480 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Novel mechanisms of strain energy dissipation in collagen polymers: their characterization, control, and application
胶原聚合物应变能耗散的新机制:其表征、控制和应用
- 批准号:
RGPIN-2014-04967 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Novel mechanisms of strain energy dissipation in collagen polymers: their characterization, control, and application
胶原聚合物应变能耗散的新机制:其表征、控制和应用
- 批准号:
RGPIN-2014-04967 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Methane-Oxidizing Bacterial Communities: A Novel Source Of Bioactive Chemical Diversity
甲烷氧化细菌群落:生物活性化学多样性的新来源
- 批准号:
9086651 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Methane-oxidizing bacterial communities: A novel source of bioactive chemical diversity
甲烷氧化细菌群落:生物活性化学多样性的新来源
- 批准号:
10171589 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Methane-oxidizing bacterial communities: A novel source of bioactive chemical diversity
甲烷氧化细菌群落:生物活性化学多样性的新来源
- 批准号:
9905580 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Novel mechanisms of strain energy dissipation in collagen polymers: their characterization, control, and application
胶原聚合物应变能耗散的新机制:其表征、控制和应用
- 批准号:
RGPIN-2014-04967 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Novel mechanisms of strain energy dissipation in collagen polymers: their characterization, control, and application
胶原聚合物应变能耗散的新机制:其表征、控制和应用
- 批准号:
RGPIN-2014-04967 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual