Next-generation computer-aided inspection technologies
下一代计算机辅助检测技术
基本信息
- 批准号:RGPIN-2017-06922
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Inspection in manufacturing is a crucial exercise, not only to verify the quality of the manufactured part, but also to provide the necessary feedback for process control. Without fast and accurate measurement of the manufactured part, maintaining production precision to minimize scrap parts is not possible. On today’s advanced manufacturing shop floors, the inspection process is performed using computer-aided technologies, as opposed to traditional hard gauges and visual evaluation by experienced inspectors. A few decades ago, the introduction of computer-aided inspection (CAI) technologies (which at that time was mainly limited to the touch-trigger probes on coordinate measuring machines) opened a whole new world for manufacturers by greatly increasing the speed and accuracy of the inspection process. With the modern manufacturing processes, there is an ever-increasing need for more sophisticated computer-aided inspection technologies that can catch up with the new manufacturing practices. Today, with the advancement of additive manufacturing (AM), a process in which a part is made layer by layer, new paradigms are emerging in advanced manufacturing. Parts with extremely complex geometries and functional internal structures can be made that could never be achievable by the means of traditional subtractive manufacturing. However, in regulated industries such as aerospace, one of the most serious hurdles to the expansion of AM is the question of part qualification. The additively manufactured parts with complex geometries have a wide variety of inspection needs that are not yet addressed by current measurement systems and data analysis techniques. Once the part is completely manufactured, its internal geometry is inaccessible and impossible to be measured by conventional inspection tools relying on surface measurements. I propose here a 5-year research program with the main philosophy that the most effective and efficient way of measuring AM parts is in-process measurement in which each layer of the part is inspected as it is built. This approach enables defect detection as well as evaluation of internal geometric errors on a layer-by-layer basis. Moreover, such layer-wise inspection enables in-situ process control at each layer in the form of corrective actions. In-situ process control is the key to the introduction of AM parts in regulated industries such as aerospace. The proposed research program will develop tools for in-process shape measurement, as well as novel algorithms to enable automatic defect detection and evaluation of internal geometric errors on a layer-by-layer basis. The proposed research program is of high interest since it will close the gap between metal AM process and the precision requirements of the regulated industries such as aerospace. Furthermore, the program will train the next generation of engineers who enable the commercial success of AM in Canada.
制造过程中的检测是一项至关重要的工作,不仅要验证制造零件的质量,还要为过程控制提供必要的反馈。如果不对制造的零件进行快速准确的测量,就不可能保持生产精度以最大限度地减少报废零件。在当今先进的制造车间,检测过程是使用计算机辅助技术进行的,而不是传统的硬量具和经验丰富的检查员的视觉评估。几十年前,计算机辅助检测(CAI)技术的引入(当时主要限于坐标测量机上的触发式测头)为制造商打开了一个全新的世界,大大提高了检测过程的速度和精度。随着现代制造工艺的发展,越来越需要能够跟上新制造实践的更复杂的计算机辅助检测技术。如今,随着增材制造(AM)的发展,一个零件被逐层制造的过程,先进制造中出现了新的范例。具有极其复杂的几何形状和功能性内部结构的零件可以通过传统减材制造的方式来制造。然而,在航空航天等受监管的行业中,AM扩展的最严重障碍之一是零件质量问题。具有复杂几何形状的增材制造部件具有各种各样的检测需求,这些需求尚未通过当前的测量系统和数据分析技术来解决。一旦零件被完全制造,其内部几何形状是不可接近的,并且不可能通过依赖于表面测量的传统检查工具来测量。我在这里提出了一个为期5年的研究计划,其主要理念是测量AM部件的最有效和最高效的方法是在过程中测量,其中每一层的部件都是在制造过程中进行检查的。这种方法能够实现缺陷检测以及逐层评估内部几何误差。此外,这种逐层检查使得能够以校正动作的形式在每一层处进行现场过程控制。现场过程控制是在航空航天等受监管行业中引入增材制造部件的关键。拟议的研究计划将开发用于过程中形状测量的工具,以及新的算法,以实现逐层自动缺陷检测和内部几何误差评估。拟议的研究计划是很高的兴趣,因为它将关闭金属AM工艺和受管制的行业,如航空航天的精度要求之间的差距。此外,该计划将培养下一代工程师,使AM在加拿大取得商业成功。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khameneifar, Farbod其他文献
A pseudo-3D ball lattice artifact and method for evaluating the metrological performance of structured-light 3D scanners
- DOI:
10.1016/j.optlaseng.2019.03.005 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:4.6
- 作者:
Ghandali, Pooya;Khameneifar, Farbod;Mayer, J. R. R. - 通讯作者:
Mayer, J. R. R.
Efficient planning of peen-forming patterns via artificial neural networks
- DOI:
10.1016/j.mfglet.2020.08.001 - 发表时间:
2020-08-01 - 期刊:
- 影响因子:3.9
- 作者:
Siguerdidjane, Wassime;Khameneifar, Farbod;Gosselin, Frederick P. - 通讯作者:
Gosselin, Frederick P.
Repeatability of on-machine probing by a five-axis machine tool
- DOI:
10.1016/j.ijmachtools.2020.103544 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:14
- 作者:
Sepahi-Boroujeni, Saeid;Mayer, J. R. R.;Khameneifar, Farbod - 通讯作者:
Khameneifar, Farbod
A low-cost open-source automated shot peen forming system.
- DOI:
10.1016/j.ohx.2022.e00263 - 发表时间:
2022-04 - 期刊:
- 影响因子:2.2
- 作者:
Siguerdidjane, Wassime;Khameneifar, Farbod;Gosselin, Frederick P. - 通讯作者:
Gosselin, Frederick P.
Airfoil profile reconstruction from unorganized noisy point cloud data
- DOI:
10.1093/jcde/qwab011 - 发表时间:
2021-02-28 - 期刊:
- 影响因子:4.9
- 作者:
Ghorbani, Hamid;Khameneifar, Farbod - 通讯作者:
Khameneifar, Farbod
Khameneifar, Farbod的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khameneifar, Farbod', 18)}}的其他基金
Next-generation computer-aided inspection technologies
下一代计算机辅助检测技术
- 批准号:
RGPIN-2017-06922 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Next-generation computer-aided inspection technologies
下一代计算机辅助检测技术
- 批准号:
RGPIN-2017-06922 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Next-generation computer-aided inspection technologies
下一代计算机辅助检测技术
- 批准号:
RGPIN-2017-06922 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Next-generation computer-aided inspection technologies
下一代计算机辅助检测技术
- 批准号:
RGPIN-2017-06922 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Next-generation computer-aided inspection technologies
下一代计算机辅助检测技术
- 批准号:
RGPIN-2017-06922 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
- 批准号:82371660
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
二次谐波非线性光学显微成像用于前列腺癌的诊断及药物疗效初探
- 批准号:30470495
- 批准年份:2004
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Equipment: MRI: Track 1 Acquisition of a Digital Real-Time Simulator to Enhance Research and Student Research Training in Next-Generation Engineering and Computer Science
设备: MRI:轨道 1 采购数字实时模拟器,以加强下一代工程和计算机科学的研究和学生研究培训
- 批准号:
2320619 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Postdoctoral Fellows as Leaders in Next-Generation Computer Science Education Research-Practice Partnerships Serving Minoritized Communities
博士后研究员作为下一代计算机科学教育研究与实践合作伙伴关系的领导者,为少数群体服务
- 批准号:
2329579 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
- 批准号:
10638121 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
- 批准号:
10714930 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Next generation transcranial ultrasound-based neuromodulation using phase shift nanoemulsions
使用相移纳米乳剂的下一代经颅超声神经调节
- 批准号:
10577371 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Computer modelling of novel perovskite halides for next-generation solar cells
用于下一代太阳能电池的新型钙钛矿卤化物的计算机建模
- 批准号:
2886759 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Studentship
Training in Theory and Computation for Next Generation Neuroscientists
下一代神经科学家的理论和计算培训
- 批准号:
10746671 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Training in Theory and Computation for Next Generation Neuroscientists
下一代神经科学家的理论和计算培训
- 批准号:
10879209 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
AIVIS: Next Generation Vigilant Information Seeking Artificial Intelligence-based Clinical Decision Support for Sepsis
AIVIS:下一代警惕信息寻求基于人工智能的脓毒症临床决策支持
- 批准号:
10699457 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别: