Myocardium Biomechanical Modelling and Myocardial Contraction Force Reconstruction

心肌生物力学建模和心肌收缩力重建

基本信息

  • 批准号:
    RGPIN-2014-06050
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Computational models of the myocardium (heart muscle), in particular the left ventricle (LV), are effective tools that can be used to study its mechanics and to gain insight into its physiology. Unlike many other tissues in the body, the beating heart is both active and passive such that the active component generates coordinated muscle contraction resulting from the heart’s electrophysiology while its passive component responds to external forces and its own generated contraction. Combined with the tissue complex intrinsic properties, the complexity of the active component and its coupling with the heart’s electrophysiological activity has made developing reliable models very challenging. Over the last many decades, researchers have developed computational cardiac models with various levels of sophistication ranging from simple passive linear elastic isotropic models to highly complex passive/active hyperelastic anisotropic models. While the latter models are promising as they agree reasonably well with experimental data they are often based on very complex algorithms, rendering its development a daunting task that require demanding time and resources. Furthermore, no commercial software is available that is capable of simulating the active/passive components of the beating heart mechanics. The very limited availability of such computational tools has prevented accelerated progress in studying cardiac mechanics and ultimately impacting the development of much needed effective tools to understand the myocardium mechanics and its physiology. One potential solution to address this issue from an engineering perspective is to develop a novel paradigm which enables developing computational cardiac mechanics models using traditional Finite Elements (FE) formulation such that commercial FE software engine and modules are integrated into a software package to be used for studying cardiac mechanics. We propose to address the limitations of current cardiac mechanics models by developing a new FE formulation based on a novel paradigm. This paradigm makes possible the utility of commercial FE software engine and modules for cardiac mechanics model development to develop highly accurate software tool for cardiac mechanics simulation. This model idealizes the myocardium as a composite material with myofibers surrounded by a complex background that mimics the tissue extracellular matrix. The myofibers of the beating heart will be modeled as hyperelastic prestressed rods with known time varying prestress. The extracellular matrix will be idealized as a hyperelastic material consistent with known mechanical properties of its multi constituents. The developed model will be tested using experimentally-derived measurements. It will be used as forward model in an inverse problem framework for contraction force reconstruction. These forces will be reconstructed using contraction displacement data derived from imaging. These forces can be used to further understand various pathologies (e.g. pathologies associated with arrhythmia and myocardial infarction). Finally, electromechanical coupling model will be developed where the developed FE model of the cardiac mechanics will be incorporated. The developed forward and inverse models can be used for furthering our understanding of the beating heart mechanics. They can play an important role in addressing a wide range of fundamental scientific questions regarding the heart physiology and gaining insight into pathways of pathological conditions. For example, they can be applied in computer simulation of cardiac resynchronization therapy used to treat patients with congestive heart failure. This simulation enables testing various therapy scenarios, paving the way for achieving optimal outcome.
心肌(心脏肌肉),特别是左心室(LV)的计算模型是可用于研究其力学并深入了解其生理学的有效工具。与身体中的许多其他组织不同,跳动的心脏既是主动的又是被动的,使得主动部件产生由心脏的电生理学引起的协调的肌肉收缩,而其被动部件响应于外力和其自身产生的收缩。结合组织复合体的固有特性、活性成分的复杂性及其与心脏电生理活动的耦合,使得开发可靠的模型变得非常具有挑战性。在过去的几十年里,研究人员已经开发出各种复杂程度的计算心脏模型,从简单的被动线性弹性各向同性模型到高度复杂的被动/主动超弹性各向异性模型。虽然后一种模型很有希望,因为它们与实验数据相当吻合,但它们通常基于非常复杂的算法,使其开发成为一项艰巨的任务,需要大量的时间和资源。此外,没有商业软件能够模拟跳动心脏机械的主动/被动组件。这种计算工具的非常有限的可用性阻碍了研究心脏力学的加速进展,并最终影响了急需的有效工具的开发,以了解心肌力学及其生理学。从工程角度解决这个问题的一个潜在解决方案是开发一种新型范式,该范式能够使用传统的有限元(FE)公式开发计算心脏力学模型,以便将商业FE软件引擎和模块集成到软件包中,用于研究心脏力学。我们建议通过开发一种基于新范式的新FE制剂来解决当前心脏力学模型的局限性。这种模式使得商业FE软件引擎和心脏力学模型开发模块的实用性成为可能,以开发高精度的心脏力学模拟软件工具。该模型将心肌理想化为复合材料,其中肌纤维被模拟组织细胞外基质的复杂背景包围。跳动心脏的肌纤维将被建模为具有已知时变预应力的超弹性预应力杆。细胞外基质将理想化为与其多组分的已知机械性质一致的超弹性材料。开发的模型将使用实验得出的测量进行测试。它将被用作收缩力重建的反问题框架中的正向模型。这些力将使用成像得出的收缩位移数据进行重建。这些力可用于进一步了解各种病理(例如,与心律失常和心肌梗死相关的病理)。最后,将开发机电耦合模型,其中开发的心脏力学有限元模型将被纳入。所开发的正、逆模型可用于进一步了解心脏跳动力学。它们可以在解决有关心脏生理学的广泛基础科学问题和深入了解病理条件的途径方面发挥重要作用。例如,它们可以应用于用于治疗充血性心力衰竭患者的心脏硬化治疗的计算机模拟。这种模拟可以测试各种治疗方案,为实现最佳结果铺平道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samani, Abbas其他文献

CT image construction of a totally deflated lung using deformable model extrapolation
  • DOI:
    10.1118/1.3531985
  • 发表时间:
    2011-02-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Naini, Ali Sadeghi;Pierce, Greg;Samani, Abbas
  • 通讯作者:
    Samani, Abbas
Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples
  • DOI:
    10.1088/0031-9155/54/8/020
  • 发表时间:
    2009-04-21
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    O'Hagan, Joseph J.;Samani, Abbas
  • 通讯作者:
    Samani, Abbas
Measurement of the hyperelastic properties of 72 normal homogeneous and heterogeneous ex vivo breast tissue samples
An inverse problem solution for measuring the elastic modulus of intact ex vivo breast tissue tumours
  • DOI:
    10.1088/0031-9155/52/5/003
  • 发表时间:
    2007-03-07
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Samani, Abbas;Plewes, Donald
  • 通讯作者:
    Plewes, Donald
Comparative biomechanical study of using decellularized human adipose tissues for post-mastectomy and post-lumpectomy breast reconstruction

Samani, Abbas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samani, Abbas', 18)}}的其他基金

Lung Biomechanical Modelling Driven by Machine Learning Algorithm Towards Effective Lung Cancer Radiation Therapy
机器学习算法驱动的肺部生物力学建模实现有效的肺癌放射治疗
  • 批准号:
    RGPIN-2019-06619
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Lung Biomechanical Modelling Driven by Machine Learning Algorithm Towards Effective Lung Cancer Radiation Therapy
机器学习算法驱动的肺部生物力学建模实现有效的肺癌放射治疗
  • 批准号:
    RGPIN-2019-06619
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Lung Biomechanical Modelling Driven by Machine Learning Algorithm Towards Effective Lung Cancer Radiation Therapy
机器学习算法驱动的肺部生物力学建模实现有效的肺癌放射治疗
  • 批准号:
    RGPIN-2019-06619
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Lung Biomechanical Modelling Driven by Machine Learning Algorithm Towards Effective Lung Cancer Radiation Therapy
机器学习算法驱动的肺部生物力学建模实现有效的肺癌放射治疗
  • 批准号:
    RGPIN-2019-06619
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Myocardium Biomechanical Modelling and Myocardial Contraction Force Reconstruction
心肌生物力学建模和心肌收缩力重建
  • 批准号:
    RGPIN-2014-06050
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Myocardium Biomechanical Modelling and Myocardial Contraction Force Reconstruction
心肌生物力学建模和心肌收缩力重建
  • 批准号:
    RGPIN-2014-06050
  • 财政年份:
    2016
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Myocardium Biomechanical Modelling and Myocardial Contraction Force Reconstruction
心肌生物力学建模和心肌收缩力重建
  • 批准号:
    RGPIN-2014-06050
  • 财政年份:
    2015
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Myocardium Biomechanical Modelling and Myocardial Contraction Force Reconstruction
心肌生物力学建模和心肌收缩力重建
  • 批准号:
    RGPIN-2014-06050
  • 财政年份:
    2014
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Lung brachytherapy needle guidance technique using a neural network/biomechanical model
使用神经网络/生物力学模型的肺近距离治疗针引导技术
  • 批准号:
    298338-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Lung brachytherapy needle guidance technique using a neural network/biomechanical model
使用神经网络/生物力学模型的肺近距离治疗针引导技术
  • 批准号:
    298338-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
  • 批准号:
    BB/Y00180X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Grant
Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
  • 批准号:
    BB/Y002466/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Grant
Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
  • 批准号:
    BB/Y002415/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Grant
Temporal fascia function during human growth: biomechanical modelling to predict the impact of surgical intervention
人类生长过程中的颞筋膜功能:预测手术干预影响的生物力学模型
  • 批准号:
    BB/X006867/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Grant
Biomechanical Modelling to Characterize Soft Tissue Contributions to Hip Joint Stability and Loading Mechanics
生物力学建模来表征软组织对髋关节稳定性和负载力学的贡献
  • 批准号:
    DGECR-2022-00028
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Launch Supplement
Inhaled gas and Ultra-short/zero-echo time MRI of pulmonary airways and airspaces for modelling the morphometry and biomechanical properties of pulmonary parenchyma and airways
吸入气体和肺气道和空腔的超短/零回波时间 MRI,用于模拟肺实质和气道的形态测量和生物力学特性
  • 批准号:
    RGPIN-2016-04760
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Biomechanical Modelling to Characterize Soft Tissue Contributions to Hip Joint Stability and Loading Mechanics
生物力学建模来表征软组织对髋关节稳定性和负载力学的贡献
  • 批准号:
    RGPIN-2022-04802
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Modelling Techniques for Subject-Specific Prediction of Biomechanical Variables Beyond the Research Environment
研究环境之外生物力学变量特定主题预测的建模技术的发展
  • 批准号:
    RGPIN-2018-03894
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Lung Biomechanical Modelling Driven by Machine Learning Algorithm Towards Effective Lung Cancer Radiation Therapy
机器学习算法驱动的肺部生物力学建模实现有效的肺癌放射治疗
  • 批准号:
    RGPIN-2019-06619
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Lung Biomechanical Modelling Driven by Machine Learning Algorithm Towards Effective Lung Cancer Radiation Therapy
机器学习算法驱动的肺部生物力学建模实现有效的肺癌放射治疗
  • 批准号:
    RGPIN-2019-06619
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了