Enhancing mathematical theory coverage in satisfiability modulo theory solvers
增强可满足性模理论求解器中的数学理论覆盖范围
基本信息
- 批准号:520750-2017
- 负责人:
- 金额:$ 1.72万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advances in computing algorithms and computer hardware have made it possible to test models of cyberphysical systems using formal techniques. This has been computationally intractable in the past. For someindustrially-relevant engineering models, we now can prove that a model meets stated requirements. However,there is still much work to do to make this possible for a large enough set of models such that the techniquesand tools will be adopted by industry. This project will tackle some of those problems by focusing on a set ofmodels and requirements that are currently intractable. The underlying mathematical problems cannot besolved quickly enough or at all without further insight. The work proposed in this project will help advance thestate-of-the-art in formal methods testing. The cyber physical systems that are being researched andprototyped today will have a tremendous impact on society in the near future. Self-driving cars and othervehicles, smart buildings, smart power grids, and personal physiological monitoring are all poised to changecentral aspects of our lives. But one of the biggest challenges they present is how to ensure they are safe andsecure, and we propose to provide tools for testing and verifying these systems. The industry partner isQuantum Research Analytics (QRA). QRA carries out formal testing of real world systems. We propose todevelop the mathematics and software necessary to expand the range of systems that QRA can test. Inparticular, we will expand the number of mathematical theories that can be solved using satisfiablity modulotheories that occur in actual industry problems that QRA will supply. Graduate students and undergraduatestudents will also contribute to this research. We will begin by taking actual industry problems that can not besolved by current methods, and we will work to solve these problems by adding new theories, or mathematics,to the current solvers. This will yield an new software with expanded functionality that can be used to formallyverify new systems.
计算算法和计算机硬件的进步使得使用形式化技术测试网络物理系统模型成为可能。这在过去的计算中是难以处理的。对于一些工业相关的工程模型,我们现在可以证明模型满足规定的要求。然而,仍然有很多工作要做,使这成为可能的一个足够大的一组模型,这样的技术和工具将被行业采用。这个项目将通过关注一组目前难以处理的模型和需求来解决其中的一些问题。根本的数学问题不可能很快解决,或者根本不可能解决,除非有进一步的洞察力。在这个项目中提出的工作将有助于推进状态的最先进的形式化方法测试。今天正在研究和原型化的网络物理系统将在不久的将来对社会产生巨大的影响。自动驾驶汽车和其他车辆、智能建筑、智能电网和个人生理监测都将改变我们生活的核心方面。但它们所面临的最大挑战之一是如何确保它们是安全的,我们建议提供测试和验证这些系统的工具。行业合作伙伴是Quantum Research Analytics(QRA)。QRA对真实的世界系统进行正式测试。我们建议开发必要的数学和软件,以扩大QRA可以测试的系统范围。特别是,我们将扩大数量的数学理论,可以解决使用可满足性modulotheories发生在实际的行业问题,QRA将供应。研究生和本科生也将为这项研究做出贡献。我们将开始采取实际的行业问题,不能bessolved由目前的方法,我们将努力解决这些问题,通过添加新的理论,或数学,以目前的解决方案。这将产生一个具有扩展功能的新软件,可用于正式验证新系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ingalls, Colin其他文献
Period-index bounds for arithmetic threefolds
算术三倍的周期索引界限
- DOI:
10.1007/s00222-019-00860-x - 发表时间:
2019 - 期刊:
- 影响因子:3.1
- 作者:
Antieau, Benjamin;Auel, Asher;Ingalls, Colin;Krashen, Daniel;Lieblich, Max - 通讯作者:
Lieblich, Max
Definite orthogonal modular forms: computations, excursions, and discoveries.
- DOI:
10.1007/s40993-022-00373-2 - 发表时间:
2022 - 期刊:
- 影响因子:0.8
- 作者:
Assaf, Eran;Fretwell, Dan;Ingalls, Colin;Logan, Adam;Secord, Spencer;Voight, John - 通讯作者:
Voight, John
Explicit coverings of families of elliptic surfaces by squares of curves
- DOI:
10.1007/s00209-022-03090-9 - 发表时间:
2022-08-16 - 期刊:
- 影响因子:0.8
- 作者:
Ingalls, Colin;Logan, Adam;Patashnick, Owen - 通讯作者:
Patashnick, Owen
Ingalls, Colin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ingalls, Colin', 18)}}的其他基金
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2022
- 资助金额:
$ 1.72万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2021
- 资助金额:
$ 1.72万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2020
- 资助金额:
$ 1.72万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2019
- 资助金额:
$ 1.72万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2018
- 资助金额:
$ 1.72万 - 项目类别:
Discovery Grants Program - Individual
Verifying engineering systems using satisfiability modulo theories
使用可满足性模理论验证工程系统
- 批准号:
536684-2018 - 财政年份:2018
- 资助金额:
$ 1.72万 - 项目类别:
Engage Plus Grants Program
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2017
- 资助金额:
$ 1.72万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2017
- 资助金额:
$ 1.72万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebra and Algebraic Geometry
非交换代数和代数几何
- 批准号:
238363-2012 - 财政年份:2016
- 资助金额:
$ 1.72万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebra and Algebraic Geometry
非交换代数和代数几何
- 批准号:
238363-2012 - 财政年份:2015
- 资助金额:
$ 1.72万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
- 批准号:
2339032 - 财政年份:2024
- 资助金额:
$ 1.72万 - 项目类别:
Continuing Grant
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2420029 - 财政年份:2024
- 资助金额:
$ 1.72万 - 项目类别:
Standard Grant
Mathematical Structure Analysis of Origami Metamaterials Using Dynamical Systems Theory
利用动力系统理论进行折纸超材料的数学结构分析
- 批准号:
23KJ0682 - 财政年份:2023
- 资助金额:
$ 1.72万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mathematical innovations woven by singularity theory and geometric topology
奇点理论和几何拓扑编织的数学创新
- 批准号:
23H05437 - 财政年份:2023
- 资助金额:
$ 1.72万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Mean Field Game Theory and Its Application to Mathematical Finance
平均场博弈论及其在数学金融中的应用
- 批准号:
23KJ0648 - 财政年份:2023
- 资助金额:
$ 1.72万 - 项目类别:
Grant-in-Aid for JSPS Fellows
WILDMOD: Model Theory of wild mathematical structures, new perspectives via geometries and positive logic.
WILDMOD:狂野数学结构的模型理论,通过几何和正逻辑的新视角。
- 批准号:
EP/Y027833/1 - 财政年份:2023
- 资助金额:
$ 1.72万 - 项目类别:
Fellowship
Fractionated photoimmunotherapy to harness low-dose immunostimulation in ovarian cancer
分段光免疫疗法利用低剂量免疫刺激治疗卵巢癌
- 批准号:
10662778 - 财政年份:2023
- 资助金额:
$ 1.72万 - 项目类别:
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
- 批准号:
10736507 - 财政年份:2023
- 资助金额:
$ 1.72万 - 项目类别:
Anatomical and functional imaging of the conventional outflow pathway
传统流出通道的解剖和功能成像
- 批准号:
10752459 - 财政年份:2023
- 资助金额:
$ 1.72万 - 项目类别:
Building the framework of controlling a pandemic based on mathematical epidemiology and evolutionary game theory
基于数学流行病学和进化博弈论构建疫情控制框架
- 批准号:
22KF0303 - 财政年份:2023
- 资助金额:
$ 1.72万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




