Deep learning based super-resolution for video codec in wireless communication
基于深度学习的无线通信视频编解码器超分辨率
基本信息
- 批准号:522185-2017
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overall objective of this Engage project is to improve digital video wireless communication experience byutilizing deep learning based super-resolution. This goal will be achieved by developing deep learning basedalgorithms for video down-sampling at transmitter and video super-resolution at receiver. Moreover, we willuse new deep learning methods to optimize the entire parameter selection process of a video encoder based onframe data and wireless link quality to achieve the best rate-distortion performance. The deep learning baseddown-sampling and super-resolution algorithms will be able to generate high resolution videos underdramatically changing communication bandwidth, significantly enhance the performance of video encoding forwireless communication, and therefore provide high quality videos under harsh wireless communicationenvironments such as in forest, underground and in dense cities. The research achievement will definitelycontribute to video super-resolution and wireless video transmission, which will benefit Canadian wirelessindustry in huge vertical markets such as video monitoring and surveillance, remote healthcare and smartsenior homes, public safety and environment monitoring.
这个Engage项目的总体目标是通过利用基于深度学习的超分辨率来改善数字视频无线通信体验。这一目标将通过开发基于深度学习的算法来实现,用于在发送器处进行视频下采样和在接收器处进行视频超分辨率。此外,我们将使用新的深度学习方法来优化基于帧数据和无线链路质量的视频编码器的整个参数选择过程,以实现最佳的率失真性能。基于深度学习的下采样和超分辨率算法将能够在急剧变化的通信带宽下生成高分辨率视频,显著提高无线通信的视频编码性能,从而在森林、地下和密集城市等恶劣的无线通信环境下提供高质量的视频。该研究成果将为视频超分辨率和无线视频传输做出贡献,这将使加拿大无线行业在视频监控和监视,远程医疗保健和智能老年住宅,公共安全和环境监控等巨大的垂直市场中受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhao, Jiying其他文献
No-reference perceptual quality assessment of stereoscopic images based on binocular visual characteristics
- DOI:
10.1016/j.image.2019.03.011 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:3.5
- 作者:
Chen, Lei;Zhao, Jiying - 通讯作者:
Zhao, Jiying
Robust Multi-Frame Super-Resolution Based on Spatially Weighted Half-Quadratic Estimation and Adaptive BTV Regularization
基于空间加权半二次估计和自适应BTV正则化的鲁棒多帧超分辨率
- DOI:
10.1109/tip.2018.2848113 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:10.6
- 作者:
Liu, Xiaohong;Chen, Lei;Zhao, Jiying - 通讯作者:
Zhao, Jiying
Zhao, Jiying的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhao, Jiying', 18)}}的其他基金
Advanced 3D Video Processing Technologies: Super-Resolution, Chroma-Keying, Depth-Map Generation, and Quality Evaluation
先进的 3D 视频处理技术:超分辨率、色度键控、深度图生成和质量评估
- 批准号:
RGPIN-2019-06163 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Advanced 3D Video Processing Technologies: Super-Resolution, Chroma-Keying, Depth-Map Generation, and Quality Evaluation
先进的 3D 视频处理技术:超分辨率、色度键控、深度图生成和质量评估
- 批准号:
RGPIN-2019-06163 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Advanced 3D Video Processing Technologies: Super-Resolution, Chroma-Keying, Depth-Map Generation, and Quality Evaluation
先进的 3D 视频处理技术:超分辨率、色度键控、深度图生成和质量评估
- 批准号:
RGPIN-2019-06163 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Advanced 3D Video Processing Technologies: Super-Resolution, Chroma-Keying, Depth-Map Generation, and Quality Evaluation
先进的 3D 视频处理技术:超分辨率、色度键控、深度图生成和质量评估
- 批准号:
RGPIN-2019-06163 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
"Advanced Keying, Compression and Watermarking of 3D Video Signals"
“3D 视频信号的高级键控、压缩和水印”
- 批准号:
227781-2012 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
"Advanced Keying, Compression and Watermarking of 3D Video Signals"
“3D 视频信号的高级键控、压缩和水印”
- 批准号:
227781-2012 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
"Advanced Keying, Compression and Watermarking of 3D Video Signals"
“3D 视频信号的高级键控、压缩和水印”
- 批准号:
227781-2012 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
"Advanced Keying, Compression and Watermarking of 3D Video Signals"
“3D 视频信号的高级键控、压缩和水印”
- 批准号:
227781-2012 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
"Advanced Keying, Compression and Watermarking of 3D Video Signals"
“3D 视频信号的高级键控、压缩和水印”
- 批准号:
227781-2012 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Quality measurement of audiovisual signals based on digital watermarking
基于数字水印的视听信号质量测量
- 批准号:
227781-2007 - 财政年份:2011
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
- 批准号:
2334628 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
DeepMARA - Deep Reinforcement Learning based Massive Random Access Toward Massive Machine-to-Machine Communications
DeepMARA - 基于深度强化学习的大规模随机访问实现大规模机器对机器通信
- 批准号:
EP/Y028252/1 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Fellowship
Optimization-based Implicit Deep Learning, Theory and Applications
基于优化的隐式深度学习、理论与应用
- 批准号:
2309810 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Security Evaluation Method Against Deep-Learning-Based Side-Channel Attacks Exploiting Physical Behavior of Cryptographic Hardware
针对利用密码硬件物理行为的基于深度学习的侧信道攻击的安全评估方法
- 批准号:
23K11102 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Co-creation between content-generating AI and humans based on deep learning
基于深度学习的内容生成人工智能与人类的共同创造
- 批准号:
23K04201 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spatial Calibration of Head-Mounted Displays Based on Implicit Function Representation of Light Fields Using Deep Learning
基于深度学习光场隐式函数表示的头戴式显示器空间校准
- 批准号:
23K16920 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deep learning-based prediction model for intraoperative neuromuscular blockade
基于深度学习的术中神经肌肉阻滞预测模型
- 批准号:
23K14406 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
TruDetect: Trustworthy Deep-Learning based Hardware Trojan Detection
TruDetect:值得信赖的基于深度学习的硬件木马检测
- 批准号:
EP/X036960/1 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Research Grant
Linking endotype and phenotype to understand COPD heterogeneity via deep learning and network science
通过深度学习和网络科学将内型和表型联系起来以了解 COPD 异质性
- 批准号:
10569732 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别: